

Interbase Replication Suite
Guide

Editor:
Tomáš Mandys, tomas.mandys@2p.cz (2p plus)

Home site:

http://www.2p.cz

Interbase Replication Suite Guide

 - 2 -

Introduction
Plenty of software uses a database to store data. There are many types of database
implementations but generally two main branches exist - SQL based relation database
management systems (RDBMS) and file based database.
One of the RDBMS is an Interbase. The Interbase is powerful transaction SQL database engine
that implements many advanced features - views, triggers, stored procedures, generators, etc.
Interbase was developed by Borland as commercial database but version 6.0 was released as
open-source. It means that it's possible use it for-free for any purposes. On open-source
database was founded new branch named Firebird. Even Borland released next Interbase v7 as
non open-source, the Firebird clone remains open-source.
Even the Interbase architecture is robust and powerful, comparable to other concurrent, one
feature limits it - there is not implemented replication engine such as in Oracle, MSSQL or even
MSAccess.
In many cases data of an enterprise are not stored in one database but they are distributed to
more locations. Replication engine try to maintain data in each of databases as synchronous as
possible. To be replication efficient, the engine catches only data changes and passes them to
the other databases.
There are many reasons why to split data:
• non-reliable connection to main database
• security, shadow database in DM zone
• data backup to remote shadow database at different place
• external database on laptops for representatives
• etc.
There are many replication models because two enterprises will have probably different
requirements.
Lets see several examples.
There are main database and shadow (read-only) database that serves as backup. When the
main database crashes, shadow database is activated as main one.
There are more equivalent databases. Data should be the same in each of them.
Enterprise maintains net of agents that have database at personal laptops. They can change
records (make orders, update information). And because they are competitors they can see only
own data.
Enterprise must consolidate data daily from subsidiaries
So there are many questions:
• how often replicate?
• does exist reliable and fast online connection?
• all tables?
• all records in table?
• uni or bidirectional?
Because replicator must meet all contradictory requirements, changes fire triggers that log them
in source database and then they are replicated to targets. It means that are transferred only
changes. Due to referential integrity it's necessary replicate in the same sequential order as the
changes occurred. If new records may be inserted in more locations, primary keys must be
unique - every record must be identifiable by unique primary key. The logging brings overhead
and the source database growths, so replication log records are deleted when are successfully
replicated. You can configure what fields values log - generally primary key values must be
logged mandatory, NOT NULL and foreign key fields recommended and remaining values
optionally.

Interbase Replication Suite Guide

 - 3 -

Let's suppose that the replicator connects to the source database, looks to change log and if
there are some records connects to the target database and transfers the changes. One
replicator is connected to both databases in one time, hence it's online replication. But what
happen if connection is broken before transfer is finished? Nothing dangerous, change log
record is removed when change is committed in target database - it simulates two phase
commit. But when an constraint problem occurs record is moved to other log where are stored
conflicting records. The replicator cannot solve such problem automatically, it must be solved
manually, hence the log is named manual log.
How is possible replicate when one of databases is unavailable from opposite location? It is
hidden behind the firewall, machine where is running connects via dial-up or connection is
unreliable. The solution is offline replication. In this case the first replicator is connected to
source database and prepares packages containing replication data and passes them to a
shared drop-off location, the second replicator reads data from reads the shared location and
applies data to the target database. The offline replication uses robust four-phase acknowledge
protocol and stores package transfer history if transfer log.
In ideal world all data are correctly replicated. But in real world from time to time happen an
exception or an accident (hard disk crashes, replication integrity corrupts, etc.). Even no crash
happen there is one exception - start of replication, because you must setup data to be
synchronous before replication is done. Who can manage databases to be ready for
replication? Answer is a synchronization. The replication transfers only changes whereas the
synchronization compares databases, table to table, record to record. This process is of course
much more time consuming especially for large databases. Note that synchronization is always
online.
Now let's suppose that there is an table containing very important data and somebody
intentionally rewrites it. This problem solves history - replicator keep record history in history
log. Unlike the replication the history is not replicated to other database.
Another possibility how to keep record history is incremental SQL log. It's a plain text file
containing sequential list of SQL commands. Note even Interbase data manipulation language
does not support BLOB values, the incremental log contains also BLOB metadata. Since it is
plain SQL text file it can be used to feed changes to any SQL database, e.g. you can replicate
changes to MySQL. Both the online and the offline methods are supported.
If data are changed at both sides data inconsistency can occur, when corresponding record is
changed in the source database and the target database. A field/record conflict happened.
The replicator is able to recover conflict automatically according or to pass conflict to the
manual log. The recovery is configurable for every relation.
All the configuration data, i.e. schemes are stored to a separate configuration database. You
can prepare it once and use for all locations, does not matter if you access it online or make
physical copy. It simplifies administration significantly.

Features

- the Interbase and Firebird (1.0, 1.5) databases supported
- the SQL Dialect 1 and 3 supported
- the offline or online synchronization
- FTP, email or shared net dir transfer for offline replication, open source transfer libraries
- the offline packages can be encoded for improved security or compressed, open source

interface, CRC checking
- visual replication manager (scheme editor)
- custom configurable history of records
- the replication server running as a GUI application or a console/NT service application

Interbase Replication Suite Guide

 - 4 -

- multi-threading supported
- multi-segment primary key supported
- conditional replication and synchronization
- extended conflict checking
- replication into tables or stored procedures
- replication actions and errors are logged into logs
- replication statistics
- international support - optional UTC time stamps, Unicode/UTF-8 encoding
- source/target database recovery from daily backup and incremental backup
- SDK - a developer can implement full replication server functionality to own software
- password encryption
- database backup/restore
- database cloning

Features not yet implemented

- replication of array fields (not planned)
- not tested for Asian code pages
- replication of structure (DDL)
- record history viewer
- GUI driven database comparer (dbdiff)
- custom installer NSIS support

Requirements

- installed Interbase/Firebird client
- the SQL server must support CommitRetaining and RollbackRetaining (Interbase v6)
- Windows 9x/ME/NT/2000/XP or Linux at x86 platform

Interbase Replication Suite Guide

 - 5 -

History
Here is brief history of development progress.

v.2.0 (6/2004)

• required IB_Repl UDF library
• Professional version (commercial)
• rewritten GUI
• NSIS installator
• replication tasks defined in replication server
• server running as NT service - IBReplServerSvc
• IBReplInst
• IBReplPackage2XML
• rewritten SDK, VCL components
• replication environment
• UTF-8 offline package support
• conflict logging
• password encoding
• environment and macro expansion
• disable replication triggers feature
• replication to target REPL$LOG and from target REPL$LOG
• record history
• extended conflict checking
• custom fields
• log file rotation
• conditional synchronization
• multi-threading support
• database cloning
• backup/restore
• stored procedure skeleton generator
• automatic (config) database upgrade
• replication cron
• external file lock
• etc.

v.1.6.9.1 (4/2004)

• added Add/remove server user commands to IBReplMan
• fixed bug when replicating DATE field in primary/foreign key

v.1.6.8.1 (11/2003)

• fixed offline transfer bug - numeric fixed point numbers was exported in package with national
(non-dot) decimal delimiter

• new LogErrSQLParams property
• improved reconnection when DB connection was lost
• package CRC checking
• auto offline package resending

Interbase Replication Suite Guide

 - 6 -

• improved logging
• improved efficiency for larger schemes
• added Default character set to IBReplServer

v.1.6.7.1 (10/2003)

• fixed possible SNAPSHOT table dead-lock when WIPELOGONDELETE used

v.1.6.6.1 (9/2003)

• fixed remapping offline package fields problem
• do not read views into relation list

v.1.6.5.4 (9/2003)

• fixed possible dead-locking due UPDATE REPL$SNAPSHOT in trigger TG_I_REPL$LOG_SEQID

v.1.6.5.3

• binary BLOBs support in SQL log
• new protected methods in TIBReplDataModule to encode/decode BLOB SQL

v.1.6.5.1 (5/2003)

• ibreplscr command line tool
• REPL$SNAPSHOT table in source and target database
• new function TIBReplDataModule.ExecSQLScript
• see upgrade.txt

v.1.6.4.3

• FDB extension (default extension of Firebird 1.5)
• optional ibrepl.key registration
• ibreplc ported to Linux

v.1.6.1 (5/2003)

• online replication bug fixed (when SQL dialect is 3) (SELECT * FROM LOG2)
• obsolete DBID field bug in IBREPLMAN manual log
• ReadTimeout parameter in transfer_email and ftp library

v.1.6 (3/2003)

• offline replication
• SQLDialect 1
• software development libraries
• visual replication manager
• command line replicator

<= v.1.5 (2002)

• synchronization and online replication
• Firebird/Interbase

Interbase Replication Suite Guide

 - 7 -

Registration
Registration is required for each computer where replication server (p.28) or console replication
server (p.38) is running. Registration is also required for SDK (p.52). Please follow instructions in the
registration dialog.
You can register using online registration form (http://www.2p.cz/en/ibrepl/registrace.html). You'll receive
activation key immediately to your mailbox.

Interbase Replication Suite Guide

 - 8 -

Interbase Replication Manager
The GUI tool that administers replication model. The model consists of schemes. The schemes
are stored in a configuration database. It is common database of Interbase format therefore
configuration may be maintained also using plain SQL commands.

See also:
Log (p.8)
Schema editor (p.8)
Statistics (p.14)
Settings (p.15)
Command line (p.8)

Replication manager - Command line parameters
A command line options can override default behavior. The options have higher priority than an
INI file options.

/I:config_filename
Overrides the default INI file (IBREPL.INI in a program directory).

/E:<name>=<value>
Defines a key for an environment (p.37)

/TRACESQL
Enables tracing/profiling of SQL commands using a SQL monitor

Log tab
Settings (p.8) Schema editor (p.8) Statistics (p.14)

The manager is logging messages to a terminal window and transparently to a file, see
Settings/Log (p.16).

Menu commands

Clear log
Clear the log terminal window

Schema editor tab
Settings (p.8) Schema editor (p.8) Statistics (p.14)

Databases (p.10) Schema (p.11) Groups (p.11) Databases in group (p.12) Relations (p.13) Fields (p.14)

Interbase Replication Suite Guide

 - 9 -

The schema editor is main windows where configuration tasks are performed. When tab is
focused connect to a configuration is performed. So first define the configuration database (p.15).
The tab contains five database grids connected to the configuration database. All the
configuration is performed on database in separate transaction. So commit changes to take
effect.
The is side effect - if a replication task is running then statistics fields of SCHEMATA and
RELATIONS tables are updated periodically - record lock possible. Stopping of replication when
configuring is recommended.

Configuration database menu commands

Commit
Commit all changes to the configuration database

Rollback
Rollback all changes in the configuration database

Open database
Open the configuration database

Close database
Close the configuration database

Create database
Create new configuration database according to settings (p.15).

Upgrade database
Upgrade the configuration database that was created by a former version of Interbase
Replicator. The upgrade process is safe, no data should be lost. Note that upgraded database
won't be compatible to older Interbase Replicator.

Backup
Backups configuration database to GBAK compatible format.

Restore
Restores configuration database from GBAK compatible format. If database already exists data in
the database are replaced and data lost.

Environment
Edit ENVIRONMENT table of the configuration database, see environment (p.37)

Settings
Open global settings dialog (p.15)

Interbase Replication Suite Guide

 - 10 -

Schema editor / Databases
Settings (p.8) Schema editor (p.8) Statistics (p.14)

Databases (p.10) Schema (p.11) Groups (p.11) Databases in group (p.12) Relations (p.13) Fields (p.14)

The grid browses records of DATABASES table.

Database menu commands

Insert
Create a new database registration record, see Database properties (p.17)

Edit
Edit a database registration record, see Database properties (p.17)

Delete
Delete a database registration record

Environment
Edit REPL$ENVIRONMENT table of given database, see environment (p.37)

Upgrade database
Upgrade a database that was used with older version of Interbase Replicator. The upgrade
process is safe, no data should be lost. But it's recommended replicate all data before upgrade
process is started. Note that upgraded database won't be compatible to older Interbase
Replicator.

Create system objects
Creates / updates all system (replication) objects of given database. It prepares database for
each schema in which the database participates. It also grants rights to dedicated replication
user.

Drop system objects
Removes system objects of all schemes from database. All replication objects are dropped and
replication records are lost Some dependency errors may appear.

Drop triggers
Removes only replication triggers of all schemes, helpful when replication condition was
changed. No replication records are affected.

Add server objects
Creates server objects, SQL users defined in schemes as replication user.

Drop server objects
Removes server objects - SQL users defined in all schemes as replication user.

Interbase Replication Suite Guide

 - 11 -

Backup
Backups database to GBAK compatible format.

Restore
Restores database from GBAK compatible format. If database already exists data in the database
are replaced and data lost.

Schema editor / Schema
Settings (p.8) Schema editor (p.8) Statistics (p.14)

Databases (p.10) Schema (p.11) Groups (p.11) Databases in group (p.12) Relations (p.13) Fields (p.14)

The grid browses records of SCHEMATA table.

Schema menu commands

Insert
Create a new schema record, see Schema properties (p.18)

Edit
Edit a schema record, see Schema properties (p.18)

Delete
Delete a schema record

Source database
Edit source database (p.19) record. Every schema has assigned one source database and one or
more target databases (in one or mere groups).

Schema editor / Groups
Settings (p.8) Schema editor (p.8) Statistics (p.14)

Databases (p.10) Schema (p.11) Groups (p.11) Databases in group (p.12) Relations (p.13) Fields (p.14)

The grid browses records of SCHEMADB table where DBID=0.

Group (S) menu commands

Insert
Create a new group of target databases, see Target database properties (p.19)

Interbase Replication Suite Guide

 - 12 -

Generate PK,FK, data fields
Source database (of selected schema - SchemaID and GroupID) is opened (as set in DATABASES)
and its objects are read (tables, fields, primary and foreign keys) and then are written to
RELATIONS and FIELDS tables. Only objects that did not exist in configuration database are added.

Create system objects
It generates all replication objects (triggers, tables, user) of given schema in source database.
Use also for refreshing of objects - only objects that does not exist in source database are
created.

Drop system objects
It destroys all replication objects of given schema.

Drop triggers
It destroys all replication triggers of given schema in source database. Use when a relation
condition was changed (Drop triggers + Create system objects). No replication records are
affected.

Clean source data
Delete all replication record that belong to selected schema. REPL$LOG, REPL$MAN, REPL$TRANSFER,
REPL$FIELD are affected. Note that offline packages must be deleted manually.

Add server users
It adds SQL server user for given schema. If the user already exists then only password is
updated. Note that Firebird does support connecting to service manager only for superserver.

Remove server users
It removes SQL server user of given schema.

Schema editor / Databases in group
Settings (p.8) Schema editor (p.8) Statistics (p.14)

Databases (p.10) Schema (p.11) Groups (p.11) Databases in group (p.12) Relations (p.13) Fields (p.14)

The grid browses records of SCHEMADB table where DBID<>0.

Group (T) menu commands

Insert
Create a new target database record, , see Target database properties (p.19)

Edit
Edit a target database record, , see Target database properties (p.19)

Interbase Replication Suite Guide

 - 13 -

Delete
Delete a target database record. If database is last remaining database in a group the group is
deleted.

Create system objects
It generates all replication objects (tables, rights) in target database. Use also for object refresh
- only objects that does not exist in target database are created.

Drop system objects
It drops all replication objects from target database.

Clean source data
Delete all replication record that belong to selected target database. REPL$LOG, REPL$MAN,
REPL$TRANSFER, REPL$FIELD are affected. Note that offline packages must be deleted manually.

Create stored procedures
Creates skeletons of target database stored procedures, i.e. where target relation is selected as
stored procedure. The administrator then will implement functionality by himself.

Add server user
It adds SQL server user for selected schema. If user already exists only password is updated.
Note that Firebird does support connecting to service manager only for superserver.

Remove server user
It removes SQL server user of given schema.

Clone from source
It clones a source database, i.e. removes all replication objects, replaces target database and
creates replication objects. If target database already exists is replaced and data are lost.

Clone empty from source
It clones a source database, i.e. removes all replication objects, replaces target database and
creates replication objects. No data is added to new database. If target database already exists
is replaced and data are lost.

Schema editor - Relations
Settings (p.8) Schema editor (p.8) Statistics (p.14)

Databases (p.10) Schema (p.11) Groups (p.11) Databases in group (p.12) Relations (p.13) Fields (p.14)

The grid browses records of RELATIONS table.

Relation menu commands

Insert
Create a new relation record, see Relation properties (p.21)

Interbase Replication Suite Guide

 - 14 -

Edit
Edit a relation record, see Relation properties (p.21)

Delete
Delete a relation record and all dependent field records

Copy from schema
It copies relation and field records from other schema. Only non existing records are added
(according to RELATIONID), see Copy from dialog (p.17)

Schema editor / Fields
Settings (p.8) Schema editor (p.8) Statistics (p.14)

Databases (p.10) Schema (p.11) Groups (p.11) Databases in group (p.12) Relations (p.13) Fields (p.14)

The grid browses records of FIELDS table.

Field menu commands

Insert
Create a new field record, see Field properties (p.24)

Edit
Edit a field record, see Field properties (p.24)

Delete
Delete a field record

Copy from relation
It copies field records from other relation. Only non existing records are added (according to
FIELDID), see Copy from (p.17)

Statistics
Settings (p.8) Schema editor (p.8) Statistics (p.14)

Number of replicated records, conflicts, errors and elapsed time are written to statistics fields of
SCHEMATA and RELATIONS tables.

Statistics menu commands

Clear schema statistics
Clear all statistic fields of selected schema.

Interbase Replication Suite Guide

 - 15 -

Clear group statistics
Clear all statistic relation fields of selected group.

Clear relation statistics
Clear all statistic fields of selected relation.

Replication Manager - Settings
Settings (p.15): Config.database (p.15) Appearance (p.16) Log (p.16) Replication (p.16)

Manages a global manager configuration that is shared with server configuration (p.29).
In a bottom section is indicated current INI file.
See also:
Environment (p.37)

Settings / Configuration database
Settings (p.15): Config.database (p.15) Appearance (p.16) Log (p.16) Replication (p.16)

Database file name
A name of the configuration database is entered in Interbase convention:
TCP/IP server_name:path/filename
NetBEUI \\server_name\path\filename
SPX servername@path/filename
If a multi-threading replication is used with a local Interbase server, use
"localhost:/path/database.gbd" syntax. It's limitation of an Interbase client. For more information
see Jeff Overcash' messages in an IBX newsgroup. Environment macros (p.37) may be used.
For example:

SERVER1:C:/DATA/DATABASE.GDB
localhost:$(_DIR_)/DATA/DATABASE.GDB

SQL dialect
A dialect used for connecting or creating of a config database. If the SQL dialect is 3 then
database object names are case sensitive and can contain spaces.

User name, Password
A user name and password that the replication server uses to login in the configuration
database. The user must have granted enough rights, to read (SELECT) all the tables and
modify (UPDATE) statistic fields (S_xxx). The password may encoded to be human unreadable
using * button. Environment macros (p.37) may be used.

Object prefix
A prefix for objects used in a configuration database. Not necessary unless more configuration
databases is situated in one GDB.

Interbase Replication Suite Guide

 - 16 -

Def.char set
A character set of a configuration database. Is important primarily when database is created.

Settings / Configuration database
Settings (p.15): Config.database (p.15) Appearance (p.16) Log (p.16) Replication (p.16)

Max.lines in terminal
Max. lines logged to a terminal window. Too many lines decrease performance significantly.

Settings / Log
Settings (p.15): Config.database (p.15) Appearance (p.16) Log (p.16) Replication (p.16)

DB log
A log where are logged massages considering to administration tasks

File name
A file where messages are logged. Set NUL to disable file logging. Environment macros (p.37) may
be used.

Max.log size, Rotate log count
If size of a log file exceed Max.log size then if a Rotate log count is zero/empty the file is deleted
else the next rotate log is used. Max.number of possible log files determines Rotate log count.
Set Max.log size to 0 to allow unlimited size of the log file.

Log error SQL commands
Log full SQL commands when an error is raised. Its helpful to debug SQL DML (data
manipulation language) errors.

Log error SQL params
Log SQL command parameter values when an error is raised. Its helpful to resolve referential
integrity conflicts.

Verbose log
Log more messages when SQL DML (data manipulation language) or backup/restore (all output
from GBAK is logged) is performed.

Settings / Replication
Settings (p.15): Config.database (p.15) Appearance (p.16) Log (p.16) Replication (p.16)

Interbase Replication Suite Guide

 - 17 -

Now as UTC
If key is checked then time stamps are logged as UTC (Universal Time Coordinates)/GMT
(Greenwich Mean Time).

Max.key length
Length of VARCHAR fields where are stored primary keys in REPL$LOG and REPL$MAN tables. Must
be larger than max. possible length of concatenated multi-segment primary keys (each segment
separated by separator) in any of replicated tables.

Copy from dialog
Set object identifier to be copied from.

See also:
Schema editor (p.8)

Database properties
The dialog edits single record of DATABASES table.

DBId
A unique database identifier greater than zero, if database is already used in a scheme then
identifier cannot be changed.

Type
• database - common Interbase database, typical extension are .GDB or .FDB
• text file - plain text file where are logged SQL command .TXT or .SQL

Name
A descriptive name

File name
If type is database then it's entered in Interbase convention:
TCP/IP server_name:path/filename
NetBEUI \\server_name\path\filename
SPX servername@path/filename
If a multi-threading replication is used with a local Interbase server, use
"localhost:/path/database.gbd" syntax. It's limitation of an Interbase client. For more information
see Jeff Overcash' messages in an IBX newsgroup. The password may be encrypted to be
human unreadable using * button. Environment macros (p.37) may be used.
For example:

SERVER1:C:/DATA/DATABASE_$(DBID).GDB
localhost:$(_DIR_)/DATA/DATABASE_$(DBID).GDB

If type is text file then it's a file name entered in system networking convention
\\server_name\resource\filename
For example:

\\SERVER1\\DATA\\LOG\\BACKUP_$(DBID).SQL

Interbase Replication Suite Guide

 - 18 -

Admin user, password, role
Data which is used by replication manager when reading database structure, creating of
replication tables and triggers. User must be of course registered in Interbase server registration
database (e.g. using IB Console).
The most common Admin user is SYSDBA.

SQL dialect
A dialect used for connecting to the database. If the SQL dialect is 3 then database object
names are case sensitive and can contain spaces.
If type is text file then output SQL commands are compliant to given SQL dialect.

Char.set
Implicit database code page. Important for correct string translation.

Object prefix
All replication tables in source/target databases will be prefixed with this name. Default value is
REPL$. Ensure names do not contain spaces if SQL dialect 1 is used.

Custom fields
Any number of custom fields may be added to replication tables of database and the customs
fields are maintained by manager. Every custom field resides an individual line in following
format:

table_name|field_name|field_type

Lines starting with semicolon (';'), sharp ('#') or slash ('/') are comments. Note that table names
are defined without the object prefix.
In example are added OWNER fields to REPL$LOG and REPL$HISTORY tables to log current database
user:

log to repl log current SQL user (owner of record)
LOG|OWNER|VARCHAR(30) DEFAULT USER
HISTORY|OWNER|VARCHAR(30) DEFAULT USER

Comment
Any free comment

Schema properties
The dialog edits single record of SCHEMATA table.

SchemaId
A unique scheme identifier greater than zero. If scheme is already used in a group then
identifier cannot be changed.

Type
replication changes are stored in source database REPL$LOG table to be replicated to target
databases
record history changes are stored in source database REPL$HISTORY table (no target
database)

Interbase Replication Suite Guide

 - 19 -

Name
A descriptive name

Keep statistics
If not checked then statistics fields (S_xxx) will be reseted always when a replication task starts,
if checked then the statistics fields will accumulate values. Reset (p.14) them from time to time
manually because it's possible non-critical overrun error during replication.

Comment
Any free comment

Source database properties
The dialog edits single record of SCHEMADB table where DBID=0. If scheme type is record history
then only one group is possible.

Source database
Source database, note that text file type database is not allowed

Repl user, password, role
A user name used by replication server for connecting to the source database. The user must
have enough rights to access (SELECT) all the replicated tables (and fields). Changes made by
this user are not replicated. If a bidirectional replication should be implemented both schemes
(source to target, target to source) must use the same replication user. The password may be
encrypted to be human unreadable using * button. Environment macros (p.37) may be used.

Separator
An ASCII char value used for delimiting of multi-segment primary keys. Choice a character does
not occur in value of any primary key and that is allowed to use in SQL command (not 0, EOL,
EOF, ' , etc.). The most suitable are values between 1 and 31, e.g. 5. Be patient when transferring
offline packages between different code pages (translation to and from UNICODE/UTF-8).

Disabled
If checked then replication to all target databases is disabled, the replicator ignores it.

Comment
Any free comment

Target database properties
The dialog edits single record of SCHEMADB table where DBID<>0. If scheme type is record history
then no target databases are possible.

Group Id
A unique group identifier greater than zero.

Interbase Replication Suite Guide

 - 20 -

Target database
Target database, note that both Interbase and text file types are not allowed

DB mask
Database mask uniquely identifies a target database in a database group framework. It's a bit
mask. The DBMASK is INTEGER field, therefore max. 31 target databases are allowed in a
group (the 32nd bit is sign bit).

Repl user, password, role
A user name used by replication server for connecting to the target database. The user must
have enough rights to access and modify (SELECT,INSERT,UPDATE,DELETE) all the
replicated tables (and fields). Changes made by this user are not replicated. The password may
be encrypted to be human unreadable using * button. Environment macros (p.37) may be used.

Disabled
If checked then replication to the target databases is disabled, the replicator ignores it.

Separator
An ASCII char value used for delimiting of multi-segment primary keys. Choice a character does
not occur in value of any primary key and that is allowed to use in SQL command (not 0, EOL,
EOF, ' , etc.). The most suitable are values between 1 and 31, e.g. 5. Be patient when transferring
offline packages between different code pages (translation to and from UNICODE/UTF-8).

Comment
Any free comment

Alternate database
Alternate database containing only replication objects that is used only for offline replication to
text file database.

Transfer library
A transfer library (p.44) to be used for an offline transfer (transfer_ prefix is excluded).

Encoder(s)
Encoder libraries (p.48) to be used for offline package encoding (enc_ is excluded). If more libraries
separated by semicolon (';') is defined then output of the first encoder is passed to the 2nd
encoder etc. The name may be followed optionally by slash and subtype name. Every encoder
adds an envelope to the offline package therefore decoder knows what library must use to
decode it.
Format:

libname1[/subtype];libname2[/subtype];...

Examples:

cmdline/zip
cmdline/zip;cmdline/pgp

Interbase Replication Suite Guide

 - 21 -

Parameters
Defines runtime parameters for transfer and encoder libraries. Because all values are prefixed
by its library name, parameters for all libraries may be held in one field (does not matter if they
are active or inactive).
The parameters are written in <name>=<value> format. Every parameter resides an individual line.
The parameter names are case insensitive. The parameter name may be post fixed by .0 (such
parameter is used by source replicator) or .1 (such parameter is used by target replicator). It
enables using of the same configuration database at both sides.
Lines starting with semicolon (';'), sharp ('#') or slash ('/') are comments.
Environment macros (p.37) may be used. Any value may be encrypted to be human unreadable
using * button. Select the value right to equal sign and press * button.
Parameter is looked for in following sequence:
1. <library>.param.{1|0}
2. <library>.param
3. default value
Example:

netdir.dropoffdir=$(LOGPATH)/shared/$(SCHEMAID)-$(D BID)

ftp.host=replicator.my-domain.com
ftp.username=repl
ftp.password=****
ftp.dropoffdir=/home/shared/$(SCHEMAID)-$(DBID)
ftp.passivemode=0

email.address.0=ibrepl1@my-domain.com
email.address.1=ibrepl2@my-domain.com
email.pop3.host=pop3.my-domain.com
email.pop3.port=110
email.pop3.username.0=ibrepl1@my-domain.com
email.pop3.username.1=ibrepl2@my-domain.com
email.pop3.password=****
email.smtp.host=smtp.my-domain.com
email.smtp.port=25

Relation properties
The dialog edits single record of RELATIONS table.

Index
Relation identifier greater than zero that determines uniquely relation index (position) in a group.
The index may be changed safely, remaining relations are renumbered automatically.

Source relation
Name of a source table or view.

Target relation
Name of a target table/stored procedure where changes are written to.

Target type
• table - target is a table

Interbase Replication Suite Guide

 - 22 -

• stored procedure - target is a stored procedure
In the stored procedure is expected mandatory input parameter VAR$OPER (probably of CHAR(1)
type) where is passed kind of operation I..insert, U..update, D..delete.

Disabled
If checked then no replication triggers are generated for the relation.

Wipe log when deleted
If checked and if a record in source database is deleted then all previous replication entries
concerning to the record are also deleted. Useful for tables which records have short lifetime
period - records are deleted before replication processes record (INSERT,DELETE,replicate). In
this case replicator cannot read current record (because does not exist) which is important for
fields of type #3 (common fields). Second disadvantage is that replication of obsolete records
decreases performance.

Keep statistics
If not checked then statistics fields (S_xxx) will be reset always when a replication task starts, if
checked then the statistics fields will accumulate values. Reset (p.14) them from time to time
manually because it's possible non-critical overrun error during replication.

Condition
Defines filter not to replicate all rows. See conditional replication (p.49)

Sync order
Defines order that are relations synchronized in. If does exist a table (B) that depends on a table
(A), the table (A) should be synchronized before the table (B). SYNCORDER of relation assigned to
the table (A) must have lower value that SYNCORDER of table (B). It's important to keep referential
integrity (constraints).

Sync actions
Defines list of synchronization actions, see Sync actions designer (p.22)

Comment
Any free comment

See also:

Sync action designer (p.22)

Sync actions designer
The dialog edits SYNCACTION field of RELATIONS table.
Only online synchronization is supported and a target relation of table type is required. Only
target database relations are modified, source database is left unchanged.
When synchronization is completed successfully, replication records (REPL$LOG, REPL$MAN)
concerning to scheme should be deleted, see Clean source data (p.12) command.
Analogous to conditional replication is possible setup conditional synchronization to filter rows.

Interbase Replication Suite Guide

 - 23 -

Synchronization engine processes step-by-step all relations according SYNCACTION settings.
Configuration database can define more actions for each relation. The engine synchronizing
according following diagram:

 I=1
 repeat
 for each RELATION ordered by SYNCORDER do
 do sync action at position I ; SYNCACTION[I]
 I=I+1
 until no remaining action;

Database type
Radio buttons switch mode of visual controls to display settings relate to selected target
database type. The actions are equivalent because in one group may be mixed Interbase and
text file target databases.

Target database is Interbase

The engine will establish connection to both source and target databases, do select and
comparison of source to target records.
The most conventional combination '36' , it means - in the first step go through the source
database, insert new and update different records, in the second step go through the target
database and delete records which already don't exist in the source database.

Method
• loop source table - do select of a relation in a source database, loop it and for each record

lookup for equivalent record in target database relation
• loop target table - do select of a relation in a target database, loop it and for each record

lookup for equivalent record in source database relation

Condition (source/target)
A condition filtering rows that should be synchronized, references to Conditional defines.
Specifies a condition that limits rows retrieved to a subset of all available rows to synchronize
process. The condition is appended to WHERE clause of source/target relation.

UPDATE non equal records
The engine will update non-equal records. Only fields, which the Do not update field option is
disabled, are affected, see Field conflict options dialog (p.25)

INSERT new records
The engine will insert to target database non-existing records. All fields are affected except
those with the Do not insert field option enabled. Valu of such fields remains NULL or is set to
default field value. See Field conflict options dialog (p.25)

DELETE non existing records
The engine will delete from target database non-existing records in source database.

Log
• direct synchronization - change target database relation that differs
• log differential SQL commands - target database remains unchanged, differential SQL

commands are logged (if performing of this script on target database synchronize it)

Interbase Replication Suite Guide

 - 24 -

Target database is text file

The engine will establish connection to source databases and do export of relation to a text file.
The text file will contain set of INSERT SQL commands.

Condition (source)
SQL WHERE condition filtering rows that should be exported, references to a name defined in
Conditional defines.

Log
• log to SQL log defined in DATABASES - the SQL script is written to the file determined as

Database name (p.17)
• log to DB log - the SQL script is written to the terminal log window and to the DBLog

Conditional defines
The condition is written using common WHERE syntax. Note that table has implicit tag 'T'.
Note that Interbase hidden field RDB$DB_KEY may be used. The field uniquely identifies any row in
relation. Its value is valid in one transaction. For more information search RDB$KEY using a
web search engine.
Conditional are defined as list of values:

<name1>=<condition1>
<name2>=<condition2>

The Condition (source/target) item references using name to it. Environment macros (p.37)
(SCHEMAID,GROUPID,DBID,DB2ID,RELATIONID) may be used.
A SQL command is constructed as:

SELECT * FROM <table> T WHERE <condition>

Example:

t.EMP_NO in (select e.EMP_NO from EMPLOYEE e inner join DEPARTMENT d on e.DEPT_ NO=d.DEPT_NO where d.HEAD_DEPT='120')

is expanded

SELECT * FROM SALARY_HISTORY T WHERE t.EMP_NO in (s elect e.EMP_NO from EMPLOYEE e inner jo

See also:

Relation properties (p.21)

Field properties
The dialog edits single record of FIELDS table.

Id
Relation identifier greater than zero that determines uniquely field index (position) in a relation.
The index may be changed safely, remaining fields are renumbered automatically.

Source field
Field name in source table/view.

Interbase Replication Suite Guide

 - 25 -

Target field
Field name in target table/procedure.

Field type
1. primary key - field is part of primary key
2. foreign key/required field - field is a foreign key or required field
3. common field - common field
If record is changed, current (NEW) and previous (OLD) values of all fields of type 1 and 2

are stored to replication log, field of #1 to REPL$LOG, #2 to REPL$FIELDS.
Field #3 are not logged anyway.

Conflict options
Extended field settings, see Field conflict options (p.25)

Field conflict options
The dialog edits OPTIONS field of FIELDS table. The Ext.conflict check (p.33) must be enabled to
process conflict checking.

Do not assign for insert
When a new record is inserted to target database then do not assign field value. The value
remains NULL or set to default value.
If target database is text file field does not appear in INSERT SQL command.

Do not update field
When a record is updated to target database then do not modify field value. The value remains
unchanged.
If target database is text file field does not appear in UPDATE SQL command.

UPDATE conflicts

Conflict occurs if replication engine does not find expected value of a target field. It means that
target record has been changed since last replication. The engine cannot make decision what
value is correct. The conflict options defines rules how to treat such states.

update only when source field changed
If checked then are replicated fields only if its value was changed. It limits conflict possibility
significantly.

leave target field value
If a field conflict occurs then target field remains unchanged. No conflict is reported.
If not checked then source value overrides target value even conflict occurred.

do record update and report field conflict
If a field conflict occurs then target field remains unchanged and field conflict is reported. Such
conflict does not block record update.

Interbase Replication Suite Guide

 - 26 -

do not record update and report conflict
If a field conflict occurs then target record is not updated and record conflict is reported. So one
conflicting field can block record update.

DELETE conflicts

do not delete record
If a field conflict occurs then target record is not deleted and conflict is reported.

See also:

Field properties (p.24)

Examples:

Initial record value:

CUST_NO CUSTOMER CONTACT_FIRST CONTACT_LA ST PHONE_NO ADDRESS_LINE CIT Y ZIP COUNTRY
1004 Central Bank E. Brocket 612110000 66 Lloyd Street Manchester M2 3LA England

is changed in source database to

CUST_NO CUSTOMER CONTACT_FIRST CONTACT_LA ST PHONE_NO ADDRESS_LINE CI TY ZIP COUNTRY
1004 Central Bank Elizabeth Brocket 612119988 66 Lloyd Street Manchester M2 3LA England

and in target database to

CUST_NO CUSTOMER CONTACT_FIRST CONTACT_LA ST PHONE_NO ADDRESS_LINE CITY
1004 Central Bank&Co E. Brocket 445577444 4 Chapel Street Liverpool L3 9RE England

Case #1
Configuration:

FIELD Update if changed.. Leave target va lue... Do record update+report Cancel record updat
CUSTOMER FALSE FALSE FALSE FALSE
CONTACT_FIRST FALSE FALSE FALSE FALSE
CONTACT_LAST FALSE FALSE FALSE FALSE
PHONE_NO FALSE FALSE FALSE FALSE
ADDRESS_LINE FALSE FALSE FALSE FALSE
CITY FALSE FALSE FALSE FALSE
ZIP FALSE FALSE FALSE FALSE
COUNTRY FALSE FALSE FALSE FALSE

Target database after replication:

CUST_NO CUSTOMER CONTACT_FIRST CONTACT_LAST PHON E_NO ADDRESS_LINE CITY ZIP COUNTRY
1004 Central Bank Elizabeth Brocket 612119988 66 Lloyd Street Manchester M2 3LA England

All changes made in target database are lost.

Case #2
Configuration:

Interbase Replication Suite Guide

 - 27 -

FIELD Update if changed.. Leave target va lue... Do record update+report Cancel record updat e+report
CUSTOMER FALSE ANY TRUE FALSE
CONTACT_FIRST TRUE FALSE FALSE FALSE
CONTACT_LAST TRUE FALSE FALSE FALSE
PHONE_NO TRUE TRUE FALSE FALSE
ADDRESS_LINE TRUE FALSE FALSE FALSE
CITY TRUE FALSE FALSE FALSE
ZIP TRUE FALSE FALSE FALSE
COUNTRY TRUE FALSE FALSE FALSE

Target database after replication:

CUST_NO CUSTOMER CONTACT_FIRST CONTACT_LA ST PHONE_NO ADDRESS_LINE CITY ZIP COUNTRY
1004 Central Bank Elizabeth Brocket 445577444 4 Chapel Street Liverpool L3 9RE England
Conflict of CUSTOMER field is reported

Target database record is probably in inconsistent state.

Case #3
Configuration:

FIELD Update if changed.. Leave target value... Do record update+report Cancel record up date+report
CUSTOMER ANY ANY TRUE TRUE

Target database after replication:

CUST_NO CUSTOMER CONTACT_FIRST CONTACT_LA ST PHONE_NO ADDRESS_LINE CITY ZIP COUNTRY
1004 Central Bank Elizabeth Brocket 612119988 66 Lloyd Street Manchester M2 3LA England
Conflict of CUSTOMER field is reported

Target record is left unchanged and conflict reported

Interbase Replication Suite Guide

 - 28 -

Interbase Replication Server (classic)
A replication server (IBREPLSERVER.EXE) controls replication process, for each task is waiting in
background for a starting alert. The alerts are the manual request, the timer event or the
Interbase event. When alerted, the server opens a configuration database and according its
settings replicates data from a source to a target database.
The server is running with a visual GUI. There is also an alternate replication server (p.38) running
in background, as a console application or as a NT service.
The settings is stored in an INI file IBREPL.INI . The replication server periodically checks the INI
file. If a change in the INI file is detected the replication server rereads it. This enables on-the-fly
INI file modification, e.g. the INI file change forces switching to replicate in opposite direction.
The default INI file name may be changed using the /I:config_filename command line
parameter (p.28). The INI file is not checked when Disable timers&events (p.36) is activated.
When exiting the program instance and a Shift key is pressed then the current window position
is saved to a IBREPL.DSK file. The server reads the IBREPL.DSK file when starting, so the replication
server opens in the same state (except if the Shift key if held pressed). The default file name
may be changed using the /SI:config_filename command line parameter (p.28).
See also:
Settings (p.29)
Task settings (p.33)
Environment (p.37)
Command line (p.28)
Logs (p.35)
Menu commands (p.36)

Replication Server - Command line parameters
A command line options can override default behavior. The options have higher priority than an
INI file options.

/I:config_filename
Overrides the default INI file (IBREPL.INI in a program directory).

/MIN
Run program minimized, overrides a Run minimized (p.30) settings.

/DISABLED
Disable automatic replication (p.36), overrides a Disable timers&event for all tasks (p.31) settings.

/NOSET
Disables the position saving and restoring anyway.

/SI:<filename>
A file name where is saved (restored from) window position, the default file name - IBREPL.DSK in
a program directory.

Interbase Replication Suite Guide

 - 29 -

/E:<name>=<value>
Defines a key for an environment (p.37)

/TRACESQL
Enables tracing/profiling of SQL commands using a SQL monitor

Replication Server - Settings
Settings (p.29): Config.database (p.29) Appearance (p.30) Log (p.30) Replication (p.31) Scheduler (p.31)

Manages a global server configuration and default keys for particular task keys. Such keys have
labels indicated by blue color. Their value may be overridden in a task configuration (p.33).
In a bottom section is indicated current INI file.
See also:
Environment (p.37)
Task settings (p.33)

Settings / Configuration database
Settings (p.29): Config.database (p.29) Appearance (p.30) Log (p.30) Replication (p.31) Scheduler (p.31)

Database file name
A name of the configuration database entered in Interbase convention:
TCP/IP server_name:path/filename
NetBEUI \\server_name\path\filename
SPX servername@path/filename
If a multi-threading replication is used with a local Interbase server, use
"localhost:/path/database.gbd" syntax. It's limitation of an Interbase client. For more information
see Jeff Overcash' messages in an IBX newsgroup. Environment macros (p.37) may be used.
For example:

SERVER1:C:/DATA/DATABASE.GDB
localhost:$(_DIR_)/DATA/DATABASE.GDB

SQL dialect
A dialect used for connecting to a config database. If the SQL dialect is 3 then database object
names are case sensitive and can contain spaces.

User name, Password
A user name and password that the replication server uses to login in the configuration
database. The user must have granted enough rights, to read (SELECT) all the tables and
modify (UPDATE) statistic fields (S_xxx). The password may be encrypted to be human
unreadable using * button. Environment macros (p.37) may be used.

Object prefix
A prefix for objects used in a configuration database. Not necessary unless more configuration
databases is situated in one GDB.

Interbase Replication Suite Guide

 - 30 -

Def.char set
A character set of a configuration database

Settings / Configuration database
Settings (p.29): Config.database (p.29) Appearance (p.30) Log (p.30) Replication (p.31) Scheduler (p.31)

Max.lines in terminal
Max. lines logged to a terminal window. Too many lines decrease performance significantly.

Show on systray
When minimized, show in a systray (hides the server from a taskbar).

Run minimized
Run program minimized after start.

Only one instance
Allow only one running instance of a server. Use if the server is running from a scheduler. If an
instance is already running then the new instance silently terminates.

Instance id
Only one server instance of the same Instance id may be running when an Only one instance
options is checked.

Multi-threading replication
Enable a multi-threading replication. Replication tasks are running in different threads. If not
enabled then the replication tasks are serialized in the main thread.
If enabled then all local server databases must be configured using a
"localhost:/path/database.gdb" syntax otherwise system crashes.

Settings / Log
Settings (p.29): Config.database (p.29) Appearance (p.30) Log (p.30) Replication (p.31) Scheduler (p.31)

DB log
A log where are logged errors and conflicts.

Repl log
A log where are logged replication statistics. Generally the Repl log should be smaller then the
DB log.

File name
A file where messages are logged. Set NUL to disable file logging. Environment macros (p.37) may
be used.

Interbase Replication Suite Guide

 - 31 -

Max.log size, Rotate log count
If size of a log file exceed Max.log size then if a Rotate log count is zero/empty the file is deleted
else the next rotate log is used. Max.number of possible log files determines Rotate log count.
Set Max.log size to 0 to allow unlimited size of the log file.

Log error SQL commands
Log full SQL commands when an error is raised. Its helpful to debug SQL DML (data
manipulation language) errors.

Log error SQL params
Log SQL command parameter values when an error is raised. Its helpful to resolve referential
integrity conflicts.

Settings / Replication
Settings (p.29): Config.database (p.29) Appearance (p.30) Log (p.30) Replication (p.31) Scheduler (p.31)

Now as UTC
If key is checked then time stamps are logged as UTC (Universal Time Coordinates)/GMT
(Greenwich Mean Time).

Offline package directory
Path to a directory where offline packages are stored. The packages are deleted when their
acknowledge is received. Environment macros (p.37) may be used. Special $(OFFDIR) macro is
expanded to "S" or "T" depending if running at a source or target database side.
Task settings (p.31)

Settings / Scheduler
Settings (p.29): Config.database (p.29) Appearance (p.30) Log (p.30) Replication (p.31) Scheduler (p.31)

Disable times&events for all tasks
Disable automatic execution of all tasks globally (both on-timer and on-event). Enables working
on a server configuration without unintentional execution of a replication task.
See also command line parameters (p.28)

Replicate when time matches cron pattern
Enables a replication when current (local/UTC) time matches a CRON pattern. There is used an
extended cron syntax.
The pattern matching engine recognizes the following fields:
field meaning allowed values note
1 minute 0-59
2 hour 0-23
3 day of month 1-31
4 month 1-12 or names, see bellow

Interbase Replication Suite Guide

 - 32 -

5 day of week 1-7 (1=Sun, etc.) or names, see bellow
6 year 100-9999 optional
7 day of year 1-366, (1=Jan 1th, etc.) optional
8 second 0-59 optional
A field may be an asterisk (*), which always stands for first-last.
Ranges of numbers are allowed. Ranges are two numbers separated with a hyphen. The
specified range is inclusive. For example, 8-11 for an hours entry specifies execution at hours 8,
9, 10 and 11.
Lists are allowed. A list is a set of numbers (or ranges) separated by commas. Examples:
1,2,5,9, 0-4,8-12.
Step values can be used in conjunction with ranges. Following a range with /<number>
specifies skips of the number's value through the range. For example, 0-23/2 can be used in the
hours field to specify command execution every other hour (the alternative in the V7 standard is
0,2,4,6,8,10,12,14,16,18,20,22). Steps are also permitted after an asterisk, so if you want to say
every two hours, just use */2.
Names can also be used for the month and day of week fields. Use the first three letters of the
particular day or month (case doesn't matter). Ranges or lists of names are not allowed.
Note: The day of a command's execution can be specified by two/three fields - day of month,
day of week and day of year. If both fields are restricted (i.e. aren't *), the command will be run
when either field matches the current time. For example, 30 4 1,15 * 5 would cause a command
to be run at 4:30am on the 1st and 15th of each month, plus every Friday.
When an optional field is omitted, it is treated as ignore by the expression evaluator as opposed
to the '*' which stands for match all. Like the asterisk '*', the under bar '_' also has special
meaning and is used to ignore imbedded fields.
Special FreeBSD keywords may be used:
Keyword Meaning
@yearly 0 0 1 1 *
@annually 0 0 1 1 *
@monthly 0 0 1 * *
@weekly 0 0 * * 0
@daily 0 0 * * *
@midnight 0 0 * * *
@hourly 0 * * * *
See UNIX crontab(5) manual page for more details.

Interval
A minimal interval that must elapse until a next replication is started using cron. Note it have
effect only during running instance of a replication server.
Syntax: [*d][*h][*m][*s]
Examples:
- 1d = 1 day
- 1h30m = 90 minutes

Replicate on event
If an event <prefix>REPLICATENOW occurs the replication server executes a replication process.
Changes are transferred to target databases as soon as possible. Name of the "hot" event may
be changed (default: REPL$REPLICATENOW). Note that Interbase events may decrease performance
significantly if the replication server is running on a different machine than the Interbase server -
events are transferred over the network.

Interbase Replication Suite Guide

 - 33 -

Max.repl.runtime
Max.time that a replication task may be running. If Max.repl runtime is elapsed the replication
task is interrupted. The same syntax as in Interval key is used.
See also: Task settings (p.31)

Do not replicate if file exists
Disables a replication (or forces stopping it when running) task execution if a defined file
(semaphore) does exist. It enables disabling of the replication when an administration task
should be performed, for example system backup that need access to Interbase databases
exclusively. Environment macros (p.37) may be used.

Task settings
Task settings (p.33): Common (p.33) General (p.33) Offline (p.34) Log (p.34) Scheduler (p.35)

The replication server can control any number of tasks. The task defines method how to
replicate, when to replicate. The task is fired either automatically or manually.
Keys indicated by a blue label overrides global settings - if non-empty. Checkboxes are using a
tri-state logic.

Task settings / Common
Task settings (p.33): Common (p.33) General (p.33) Offline (p.34) Log (p.34) Scheduler (p.35)

Task name
A name that appears in a task list.

Comment
Any free comment

Task settings / General
Task settings (p.33): Common (p.33) General (p.33) Offline (p.34) Log (p.34) Scheduler (p.35)

Type Replicate
online records connect to both source and target databases and replicate records
online repl.log connect to both source and target databases and transfer source REPL$LOG
to target REPL$LOG
offline-source - connect to source database and prepare/process offline packages
offline-target records connect to target database and replicate records taken from offline
packages
offline-target repl.log connect to target database and store changes to REPL$LOG
target - connect to a target database and replicate target REPL$LOG
synchronization - connect to both source and target databases and perform
synchronization

Interbase Replication Suite Guide

 - 34 -

SchemaId(s), GroupId(s), SrcDBId(s), TgtDBId(s)
Identifies a scheme which task will be processed. Use a ... button to select it from a list provided
from a configuration database. Press Alt+Up/Down to show lookup dialog.

Now as UTC
Overrides global settings (p.31) of an identical name.

Ext.conflict check
If is checked then extended conflict checking is performed, it means that is possible to resolve
field or record conflicts. The extended conflict checking is slower because more select to a
target database must be performed.

Report to source / target
Replication errors and conflicts are logged to REPL$MAN of a source/target database. Enables to
choice which database administrator will be responsible for manual conflict resolving.

Task settings / Offline
Task settings (p.33): Common (p.33) General (p.33) Offline (p.34) Log (p.34) Scheduler (p.35)

Offline package directory
Overrides global settings (p.31) of an identical name.

Receive data
Receive offline packages prior to a replication (REPL$LOG processing)

Send data
Send pending offline packages.

Resend data
Resend packages if a package (which has been sent after another one is acknowledged but
former is still unacknowledged. - probable corruption or lost package).
Example:
TRANSFERID STAMP_SENT TRANSFERID_ACK
10 1.1.2000 2
11 2.1.2000 NULL
12 3.1.2000 NULL
Now if an acknowledge of the package #12 come, the package #11 is resented. In normal flow
must correspond an order of the packages to the order of the acknowledges. So if the
acknowledge of the package #12 has been received, the package #11 was lost - the opposite
side did not received it correctly.

Task settings / Log
Task settings (p.33): Common (p.33) General (p.33) Offline (p.34) Log (p.34) Scheduler (p.35)

Interbase Replication Suite Guide

 - 35 -

DB log, Repl log
Overrides a DB log, Repl log global settings (p.30).

Log name
An identifier that is logged in every message. It enables to distinguish messages if more tasks
are logging to a shared file.

Task settings / Scheduler
Task settings (p.33): Common (p.33) General (p.33) Offline (p.34) Log (p.34) Scheduler (p.35)

Disable timer&event
Disables auto task execution.

Others
Overrides global settings (p.31).

Replication Server - Logs

Tasks
A list of tasks that the replication server controls.
See: File commands (p.36) Task settings-Log (p.33)

Replication log, DB log
Replication process messages are written to a Replication log, possible errors/conflict to a DB
log. The messages are passed through a terminal window to a file.
See: Settings-Log (p.30), Task settings-Log (p.34), Max.lines in terminal (p.30), Edit/Clear (p.36)

Repl.log table
REPL$LOG records considering to a current replication task. The record can be deleted from
current scheme using [-] button at toolbar (according its DBMASK). To take effect acquire manual
commit.
A Fields tab shows a list of logged foreign fields in REPL$FIELD.

Manual log table
REPL$MAN records considering to current replication task. Record can be deleted using [-] button
at toolbar or moved back to a REPL$LOG using [+] button at toolbar (according its DBMASK). To take
effect acquire manual commit.
A Fields tab shows list of logged foreign fields in REPL$FIELD.
The Description tab shows a reason of an error.
The Conflict fields tab indicates values that cause a conflict (in a XML format according
conflict.dtd).

Interbase Replication Suite Guide

 - 36 -

Transfer table
A list of offline transfers for given task. Clear STAMP_SENT, STAMP_REC or STAMP_PROC
to reprocess a offline package. To take effect acquire manual commit.

Replication Server - Menu commands

File/New task
Add a new task to a task list
Task settings (p.33).

File/Edit task
Edit a current task.
Task settings (p.33).

File/Delete task
Delete a current task from a task list.

File/Move up
Move a current task in a task list up.

File/Move down
Move a current task in a task list down.

File/Settings
Show a settings dialog (p.29).

Edit/Clear
Clear a replication or a DB log terminal window.

File/Clear cached settings
The replication server caches values from a configuration database to improve performance.
Use this command if a scheme definition in the configuration database has been changed when
the replication server is running to reread values to cache during next execution loop.

Run/Replicate
Start a replication of a given task manually.

Run/Refresh log record count
Refreshes #log and #man columns that indicates number of records remaining in the
REPL$LOG/REPL$MAN tables.

Run/Stop
Force stopping of a current task.

Run/Stop all
Force stopping of all running tasks.

Interbase Replication Suite Guide

 - 37 -

Run/Disable timers&events
If checked then disables auto execution of all replication tasks and INI file checking. See also
Disable timers&events for all tasks (p.31) and command line (p.28)

Help/Contents
Show help contents

Help/Home page
Go to replicator's home web site.

Help/About
Show program info and release number.

Environment
The environment is set of variables. The variable identified by a macro name written $(variable)
is expanded. The $(variable) string is substituted is substituted by the variable value taken from
the environment. The environment enables to define and distribute only single configuration
database - all replication server use the config database containing the same data. It simplifies
configuration maintaining.
The environment variable is searched in following sequence:
1. implicit variables (_VER_,_DIR_,DBID,...)
2. variables defined using /E command line parameter (p.28)
3. variables defined using Environment command, stored in an INI file
4. variables from REPL$ENVIRONMENT table in a source/target database
5. variables from ENVIRONMENT table in a config database
6. variables from a system environment, keys prefixed IBREPL_
7. variables from the system environment
Implicit variables vary when is looked for the variable (what command is called)
DIR program directory
VER IBReplicator version
SCHEMAID schema id
GROUPID groupid
DBID database id
DB2IDtarget database in offline replication
OFFDIR offline temporary directory
In ENVIRONMENT tables exist following mandatory records
_VERSION database version
To setup the environment entries in environment dialog specify variables in 'name=value' form.
Do not add quotes for long names, for example:

DBPATH=C:\Documents and settings\DATA
LOGPATH=$(DBPATH)
USER=sysdba
PASSWORD=masterkey

Interbase Replication Suite Guide

 - 38 -

Interbase Replication Server (service)
A replication server (IBREPLSERVERSVC.EXE) controls replication process. It implements the same
functionality as replication server (p.28) the only difference is that the service server is running in
background whereas the classic server provides a visual interface.
The service is configured using an INI file. The INI file uses format of the classic replication
server (p.28) therefore the best way is to define all task using GUI of the classic server and pass
name of the INI file using an /I parameter.
One service instance controls all tasks defined in the INI file. If on one machine has to be
running more replication servers it's necessary identify the particular server using name (p.38)
parameter.
The service server supports dual interface, it can run either as a NT service or a console
application. The NT service requires Windows NT/2000/XP, the console application is running
on any 32-bit Windows platform (Windows 9x/ME/NT/2000/XP).
Any program that is able running as the NT service must be inserted to a list of services. The list
is managed by a system service manager. There is 3rd party software that do it. But the service
server supports self registration using /INSTALL parameter. When installed as the NT service,
new entry "IBReplServer service 'default'" appears in the service list. From here is the service
controlled using a properties dialog. In the properties dialog setup if the service is started
automatically when the system starting or manually. Also you can stop, pause or continue the
service, it's equivalent to command line command.
An example how install 2 NT services and run third console server

 ibreplserversvc First /I:IBREPL1.ini /INSTALL
 ibreplserversvc Second /I:IBREPL2.ini /INSTALL
 ibreplserversvc Third /I:IBREPL3.ini

Every running server provides its current status. The status is held in a shared FILE_MAPPING
memory. To print the status use /STATUS (p.38) parameter.
For example to print status of Second instance from previous example:

 ibreplserversvc Second /STATUS

Note that a multi-threading is supported.

Command line

The service server is controlled from the command line.

Interbase Replication Suite Guide

 - 39 -

Usage: ibreplserversvc [<name>] [/STATUS] [/PAUSE] [/CONTINUE] [/STOP] [/KILL]
 [/RESET] [/I:<inifile>] [/N :<machine>] [/INSTALL]
 [/U:<user>] [/P:<psw>] [/F: <file>] [/UNINSTALL] [/SILENT]
 [/SECURITY] [/O:<stdout>] [/H] [/?]

Description:
 <name> name of service, enable running more replication servers, default: "default"'
 <inifile> configuration file, default IBREPL.IN I in program directory

 /PAUSE stop all running tasks, pause the rep lication server
 /CONTINUE continue (unpause)
 /STOP stop replication server
 /KILL kill replication server, not recommen ded

 /STATUS print current status
 /RESET reset status

 /INSTALL install NT service
 <user> service account "DomainName\Username" , default: "LocalSystem"
 <psw> service account password
 <machine> NT service machine name
 <file> file where is logged current status (FILE_MAPPING)
 /UNINSTALL uninstall NT service, remove from NT service list

 /SILENT no stdout output
 <stdout> file used for stdout
 /SECURITY print security info

 /? /H print help info

Interbase Replication Suite Guide

 - 40 -

IBREPLC.EXE
A command line replicator tool that can replicate a replication task. The tool is running as a
console application and no user control is required. The main difference between a service
replicator (p.38) and the IBREPLC.EXE is that the service tool is running until is manually terminated
whereas this tool is executed, process a required task and terminates by itself.
The tools is executed manually either from the command line, from other software or from a
scheduler. In the scheduler is possible to setup exact time when to replicate.
All the functionality of the replication server (p.28)is supported. See command line help IBREPLC.EXE

/? for a list of parameters.
Using the /I:<ini> parameter set an INI file location. All the INI file parameters may by
overridden at the command line.

Interbase Replication Suite Guide

 - 41 -

IBREPLINST.EXE
A command line replicator tool that can manage features managed from the replication
manager (p.8). The tool is running as a console application and no user control is required.
Using this tool is possible to create a custom batch file that will be responsible for replication
environment installation.
See command line help IBREPLINST.EXE /? for list of parameters. Corresponding features are
explained in the replication manager (p.8).

Interbase Replication Suite Guide

 - 42 -

IBREPLSCR.EXE
A command line SQL scripting tool that processes a SQL script and executes SQL commands
to a source or target database. Special tags may be placed to the SQL script. Because these
tags are comments they have no effect at a common SQL exec tools (ibconsole , ibsql ...). But
the ibreplscr recognizes them and enables select processing.
See command line help IBREPLSCR.EXE /? for list of parameters.
Using an /I:<ini> parameter set an INI file location or set all parameters from command line.
The command line parameters override the INI file settings.

The tags used in the SQL script
/* @YYYYMMDD hhmmss */
a stamp when the replication server made a record (the stamp of first record in a replication
loop)
/* #SEQID */
Current SEQID from REPL$LOG.
/* BLOB_TXT:table.field where<CRLF>blob content*/
Because is impossible change a BLOB field using a plain SQL command, values of all not-
NULL BLOB fields are written to the SQL script.
Table.field identifies the BLOB field (column), where identifies the record (row). Blob content
follows, note that "*/" sequence is changed to "*_/" and backslashes are doubled.
/* BLOB_BIN:table.field where<CRLF>hex blob content */
The same as in text BLOB but data are encoded in hex string

Interbase Replication Suite Guide

 - 43 -

IBREPLPACKAGE2XML.EXE
A command line tool that exports content of in offline binary package to a XML file. The XML is
formatted according offpackage.dtd .
The exported file may help to resolve a replication problem or can be used to feed the package
to own database.
The tool is able to export the packages stored in a temporary offline directory or the shared
packages that are enveloped.

Interbase Replication Suite Guide

 - 44 -

Transfer offline libraries
Replicator sends and receives packages to/from a drop-off location using a transfer library. The
transfer library is a common dynamic loadable library that is loaded and released during
replication process (dynamic linking).

transfer_email
The library exchanges offline packages using common email communication. Offline packages
are sent to a SMTP server and read from a POP3 server. Using of a mailbox that is dedicated to
one scheme is recommended.

Configuration parameters (p.19)

email.SMTP.Host[.{0|1}]=<host name>
Host name used for outgoing emails.
Example: smtp.email.com or 192.168.1.1

email.SMTP.Port[.{0|1}]=<port>
Port where SMTP server listening
Default: 25

email.SMTP.AuthType[.{0|1}]=<auth>
0 no authentication is required, default
1 simple authentication is required (AUTH LOGIN)

email.SMTP.UserName[.{0|1}]=<user>
Login user name if required by SMTP

email.SMTP.Password[.{0|1}]=<psw>
Authorization password if authentication required

email.SMTP.ReadTimeout[.{0|1}]=<timeout>
ReadTimeout is an integer property that indicates the number of milliseconds that the
connection should wait for the peer connection to become readable using the protocol stack.
Default value: 20000 ms (0=infinity)

email.Address.0=<address>
Sender address (From).

email.Address.1=<address>
Addressee (To).

email.POP3.Host[.{0|1}]=<host>
Host name of POP3 server used for incoming emails.

Interbase Replication Suite Guide

 - 45 -

email.POP3.Port[.{0|1}]=<port>
Port where SMTP server listening
Default: 110

email.POP3.APOP[.{0|1}]=0
1 use the alternate authentication method providing secure password exchange over the
network

email.POP3.UserName[.{0|1}]=<user>
Username that represents the account identity used for the POP3 account

email.POP3.Password[.{0|1}]=<psw>
Password that represents the password used for the POP3 account.

email.POP3.ReadTimeout[.{0|1}]=<timeout>
ReadTimeout is an Integer property that indicates the number of milliseconds that the
connection should wait for the peer connection to become readable using the protocol stack.
Default value: 20000 ms (0=infinity)

email.tempdir[.{0|1}]=<temp dir>
Directory where are created temporary files.
Default value: system temporary directory

Example:

; email of source side replicator
email.address.0=ibrepl1@my-domain.com
; email of target side replicator
email.address.1=ibrepl2@my-domain.com
; POP3 server, the same for both side replicators
email.pop3.host=pop3.my-domain.com
email.pop3.port=110
; authorization
email.pop3.username.0=ibrepl1@my-domain.com
email.pop3.username.1=ibrepl2@my-domain.com
email.pop3.password=****
; outgoing server
email.smtp.host=smtp.my-domain.com
email.smtp.port=25

transfer_ftp
The library exchanges offline packages using common FTP protocol. A FTP server (visible from
both ends) must exist.

Configuration parameters (p.19)

ftp.Host[.{0|1}]=<host>
The IP address or host name for the computer acting as a FTP server connections.

Interbase Replication Suite Guide

 - 46 -

ftp.Port[.{0|1}]=<port>
Represents the port number used for the FTP Control channel.

ftp.Passive[.{0|1}]={0|1}
Determines how a File Transfer Protocol Data connection is made.
0 the PORT method is used
1 the PASV method is used

ftp.UserName[.{0|1}]=<user>
The user authorization provided for authentication of client connections to an FTP server.

ftp.Password[.{0|1}]=<psw>
The user authorization provided for authentication of client connections to an FTP server.

ftp.ReadTimeout[.{0|1}]=<timeout>
ReadTimeout is an Integer property that indicates the number of milliseconds that the
connection should wait for the peer connection to become readable using the protocol stack.
Default value: 20000 ms (0=infinity)

ftp.Proxy.Host[.{0|1}]=<host>
The IP address or host name for the computer acting as a proxy server for FTP client
connections.

ftp.Proxy.Port[.{0|1}]=<port>
The port number used for connections to the computer acting as a proxy server for FTP client
connections.

ftp.Proxy.UserName[.{0|1}]=<user>
The user authorization provided for authentication of client connections to an FTP proxy server.

ftp.Proxy.Password[.{0|1}]=<psw>
The user authorization provided for authentication of client connections to an FTP proxy server.

ftp.Proxy.Type[.{0|1}]=<type>
Connection and authentication methods permitted for proxy connections to an FTP server.
0 NONE sends the FTP client Username and optional Password.
1 USERSITE sends the ProxySettings Username and optional Password, followed
immediately by the FTP client Username and optional Password.
2 USER sends the ProxySettings Username and optional Password, sends the SITE
command and the FTP Host property, and the FTP client Username and optional Password.
3 OPEN sends the ProxySettings Username and optional Password, sends the OPEN
command with the FTP Host property, and the FTP client Username and optional Password.
4 USERPASS calls SendCmd with the command USER user@proxyuser@host, calls
SendCmd with the command PASS pwd@proxypwd, or optionally PASS pwd.
5 TRANSPARENT sends the ProxySettings Username and optional Password, followed
immediately by the FTP client Username and optional password.
6 HTTPPROXYWITHFTP not implemented at this time.

Interbase Replication Suite Guide

 - 47 -

ftp.DropOffDir[.{0|1}]=<dir>
The FTP server directory acting as shared drop-off directory for source and target replicators.

Example:

ftp.host=replicator.my-domain.com
ftp.username=repl
ftp.password=****
ftp.dropoffdir=/home/shared/$(SCHEMAID)-$(DBID)
ftp.passivemode=0

transfer_netdir
The library exchanges offline packages to/from a net folder. This encoder is helpful for testing
and debugging.

Configuration parameters (p.19)

netdir.dropoffdir[.{0|1}]=<directory>
The shared directory acting as shared drop-off dir for source and target replicators.

Example:

netdir.dropoffdir=$(LOGPATH)/shared/$(SCHEMAID)-$(D BID)

Interbase Replication Suite Guide

 - 48 -

Encoder offline libraries
Using an encoder library is possible process offline package (before is sent and after has been
received). You can for example improve security if you encrypt offline packages using tripple-
DES or you can save your bandwidth if big packages are packed (ZIP, ARJ).

enc_cmdline
The encoder saves offline package to a file in temporary directory, passes name of the file to a
command line driven utility. The utility output is enveloped and passed to next encoder or to
transfer library. Analogous decoding is performed.
The encoder library may process more tasks. The required task is specified in encoder list by a
subtype name that follows the encoder name, for example cmdline/zip .

Configuration parameters (p.19)

cmdline[_<subtype>].tempdir=<temp dir>
Directory where are created temporary files
Default value: system temporary directory

cmdline[_<subtype>].cmd.0=<command line>
Command line for decoding.
Default values:
 cmdline_zip.cmd.0=pkunzip "%src%" "%tmpdir%"
 cmdline_arj.cmd.0=arj e "%src%" "%tmpdir%"

cmdline[_<subtype>].cmd.1=<command line>
Command line for encoding.
Default values:
 cmdline_zip.cmd.1=pkzip "%dest%" "%src%"
 cmdline_arj.cmd.1=arj a "%dest%" "%src%"
Parse key words for cmdline parameters:
%src% source file name
%dest% target file name
%name% offline package name
%tmpdir2% temporary dir with last slash
%tmpdir% temporary dir without last slash

Interbase Replication Suite Guide

 - 49 -

Conditional replication
Enabled run-time conditional replicating - if record should be replicated. Text of this field is
inserted into AFTER INSERT/UPDATE/DELETE triggers that are called when record has been
changed. If condition you can affect if write it to REPL$LOG. There are declared some variables
in every trigger.
Template of a generated trigger:

 CREATE TRIGGER
 AFTER UPDATE|INSERT|DELETE
 MANDATORY VARIABLE DECLARATION
 FACULTATIVE VARIABLE DECLARATION
 MANDATORY PART
 CONDITIONAL PART
 IF (VAR$COND > 0) THEN
 INSERT INTO REPL\$LOG

Condition field:

 FACULTATIVE VARIABLE DECLARATION
 CONDITIONAL PART

Mandatory variables
• VAR$SEPARATOR CHAR(1)
Separator used as primary key delimiter
• VAR$OLDPKEY VARCHAR(MaxKeyLength (p.16))
Primary key values valid before update/delete
• VAR$NEWPKEY VARCHAR(MaxKeyLength (p.16))
Primary key values valid after update/insert
• VAR$ID INTEGER
• VAR$COND INTEGER
The most important variable. Reset (to NULL or 0) the variable to not to write record to REPL$LOG or
REPL$HISTORY.
• VAR$SCHEMAID INTEGER, VAR$RELATIONID INTEGER, VAR$GROUPID INTEGER, VAR$DBMASK INTEGER
Identifies schema its record is replicated, DBMASK is not used in record history type.
• VAR$RELATIONNAME VARCHAR(100)
Name of relation its record is replicated
• VAR$OPER CHAR(1)
Kind of operation (D..delete, I ..insert, U..update)
• VAR$REPLUSER CHAR(31)
Defined replication user for current scheme.

Facultative variables
Any variable declaration, from top of field while line beginning DECLARE VARIABLE.

Conditional part
Aim is setting or resetting of VAR$OPER variable. It is possible to use any relation fields using
NEW/OLD prefix. But because part is common for all kinds of triggers (INSERT/DELETE/UPDATE)
and in the INSERT trigger is illegal OLD and in the DELETE trigger is illegal NEW prefix, new parse
symbols are defined.
• {#CXO#} .. substitute OLD if possible (UPDATE/DELETE), otherwise NEW (INSERT)

Interbase Replication Suite Guide

 - 50 -

• {#CXN#} .. substitute NEW if possible (UPDATE/INSERT), otherwise OLD (DELETE)
• {#IF <cond1>,<cond2>,...#}

Following code (until next {#IF#} symbol) is used or omitted according to <cond>
- ALL .. always true
- INSERT,UPDATE,DELETE .. insert if kind of trigger in the list
- !INSERT,!UPDATE,!DELETE .. insert unless kind of trigger in the list

REPL$CONFIG
The table contains data that are required in runtime in replication triggers. The table is fed by
Replication manager (p.8). A administrator need not take care of it, with one exception.
There is the field DISABLED that enables to switch-off logging to REPL$LOG or RELP$HISTORY tables.
To disable logging for particular schemes set value to 'N'.

Example

 DECLARE VARIABLE VAR$PLACEID INTEGER;
 DECLARE VARIABLE VAR$PLACEID_A INTEGER;

 SELECT PLACEID_A FROM TASKS /* list of tasks a ssigned to distributed places */
 WHERE ID={#CXO#}.TASKID
 INTO VAR$PLACEID_A;

 SELECT ID FROM PLACE /* list of places */
 WHERE SCHEMAID=:VAR$SCHEMAID
 INTO VAR$PLACEID;

 {#IF DELETE#}
 /* insert if trigg er is delete */
 {#IF ALL#}
 IF (VAR$PLACEID IS NULL OR VAR$PLACEID_A<>VAR$PLA CEID) THEN
 VAR$COND = 0; /* do not replicate "foreign" task */

Interbase Replication Suite Guide

 - 51 -

Unit IBDataSet2
Auxiliary unit that improves efficiency of TIBDataSet

TIBDataSet2
type
 TIBDataSet2 = class(TIBDataSet);

Overrides TIBDataSet and improves efficiency - limits obsolete SQL commands that break
TIBReplicator (p.62) flow.

QSelect (TIBDataSet2)

public
 property QSelect;

QDelete (TIBDataSet2)

public
 property QDelete;

QModify (TIBDataSet2)

public
 property QModify;

QInsert (TIBDataSet2)

public
 property QInsert;

PrepareBlobs (TIBDataSet2)

public
 procedure PrepareBlobs;

SetFieldAsVariant (TIBDataSet2)

public
 procedure SetFieldAsVariant(
 Field: TField;
 const Val: Variant);

Fixes TIBCustomDataSet.InternalSetFieldData where empty string in a TIBStringField is always
changed to Null

Register
procedure Register;

Used by IDE to register component at palette

Interbase Replication Suite Guide

 - 52 -

Unit IBReplicator
A developer library that offers all IB Replicator Suite functionality to independent developers. It's
possible implement all functionality into a custom application and no external executables are
necessary anymore.

TValueList
type
 TValueList = class(TStringList);

Sorted TStringList that implements Values (p.52) property. TStringList disables writing to Values
when Sorted is True .

Values (TValueList)

public
 property Values[const Name: string]: string rea d write;

just overrides TStrings.Values

TReplFieldDefs
type
 TReplFieldDefs = class;

Structure for caching config database parameters

See also
TReplLogRecord (p.55)

ClearTags (TReplFieldDefs)

public
 procedure ClearTags(aTagMask: Integer);

BuildFieldDefs (TReplFieldDefs)

public
 procedure BuildFieldDefs(
 const CN: string;
 fCachedList: TStrings;
 aSQLDialect_Src: Integer;
 aSQLDialect_Tgt: Integer;
 IUD: Char);

Interbase Replication Suite Guide

 - 53 -

GetWhereParams (TReplFieldDefs)

public
 procedure GetWhereParams(
 aSQLDialect_Src: Integer;
 aSQLDialect_Tgt: Integer;
 const aPrefix_Tgt: string;
 var aWhere_Src: string;
 var aWhere_Tgt: string);

GetWhereValues (TReplFieldDefs)

public
 procedure GetWhereValues(
 aSQLDialect_Src: Integer;
 aSQLDialect_Tgt: Integer;
 IUD: Char;
 const aOldPKey: TStringOpenArray (p.89) ;
 const aNewPKey: TStringOpenArray (p.89) ;
 var aWhere_Src: string;
 var aWhere_Tgt: string);

Destroy (TReplFieldDefs)

public
 destructor Destroy; override;

Fields (TReplFieldDefs)

public
 Fields: array[1 .. 3] of array of TReplFieldIte m (p.98) ;

FieldRefs (TReplFieldDefs)

public
 FieldRefs: array of TReplFieldRef (p.98) ;

RelationName_Src (TReplFieldDefs)

public
 RelationName_Src: string;

RelationName_Tgt (TReplFieldDefs)

public
 RelationName_Tgt: string;

Type_Tgt (TReplFieldDefs)

public
 Type_Tgt: Char;

Where_Src (TReplFieldDefs)

public
 Where_Src: string;

Interbase Replication Suite Guide

 - 54 -

Where_Tgt (TReplFieldDefs)

public
 Where_Tgt: string;

WhereParam_Src (TReplFieldDefs)

public
 WhereParam_Src: string;

WhereParam_Tgt (TReplFieldDefs)

public
 WhereParam_Tgt: string;

InsertSQL_1 (TReplFieldDefs)

public
 InsertSQL_1: string;

InsertSQL_2 (TReplFieldDefs)

public
 InsertSQL_2: string;

ModifySQL (TReplFieldDefs)

public
 ModifySQL: string;

TReplLogField
type
 TReplLogField = class;

Abstraction of a source database field

See also
TReplLogRecord (p.55) TReplLogField_IBSQL (p.60) TReplLogField_Offline (p.60)

DataType (TReplLogField)

public
 property DataType: TFieldType read;

See also
TFieldType

DataType_F (TReplLogField)

public
 property DataType_F: Char read;

See also
TOffReplRecValue (p.92).DataType

Interbase Replication Suite Guide

 - 55 -

asString (TReplLogField)

public
 property asString: string read;

asVariant (TReplLogField)

public
 property asVariant: Variant read;

asInteger (TReplLogField)

public
 property asInteger: LongInt read;

asFloat (TReplLogField)

public
 property asFloat: Extended read;

asInt64 (TReplLogField)

public
 property asInt64: Int64 read;

asDateTime (TReplLogField)

public
 property asDateTime: TDateTime read;

IsNull (TReplLogField)

public
 function IsNull{}: Boolean; virtual; abstract;

IsBlob (TReplLogField)

public
 function IsBlob{}: Boolean;

TReplLogRecord
type
 TReplLogRecord = class;

Abstraction of a source database REPL$LOG record

See also
TReplLogField (p.54) TReplTargetDatabase (p.57).ReplicateRecord (p.58) TReplLogRecord_Online (p.61)
TReplLogRecord_Offline (p.62)

Src_Record (TReplLogRecord)

public
 property Src_Record[Idx: Integer]: TReplLogFiel d (p.54) read;

Interbase Replication Suite Guide

 - 56 -

Src_IsEmpty (TReplLogRecord)

public
 property Src_IsEmpty: Boolean read;

Src_RecordCount (TReplLogRecord)

public
 function Src_RecordCount{}: Integer;

Src_FieldExists (TReplLogRecord)

public
 function Src_FieldExists(Idx: Integer): Boolean ;

FieldQ_Locate (TReplLogRecord)

public
 function FieldQ_Locate(
 aNew: Char;
 aIdx: Integer): TReplLogField (p.54) ; virtual; abstract;

FieldQ_IsEmpty (TReplLogRecord)

public
 function FieldQ_IsEmpty{}: Boolean; virtual; abst ract;

Create (TReplLogRecord)

public
 constructor Create(aReplicator: TIBReplicator (p.62));

Destroy (TReplLogRecord)

public
 destructor Destroy; override;

SchemaId (TReplLogRecord)

public
 SchemaId: Integer;

GroupId (TReplLogRecord)

public
 GroupId: Integer;

SeqId (TReplLogRecord)

public
 SeqId: Integer;

RelationId (TReplLogRecord)

public
 RelationId: Integer;

Interbase Replication Suite Guide

 - 57 -

CN (TReplLogRecord)

public
 CN: string;

IUD (TReplLogRecord)

public
 IUD: Char;

OldPKey (TReplLogRecord)

public
 OldPKey: TStringOpenArray (p.89) ;

NewPKey (TReplLogRecord)

public
 NewPKey: TStringOpenArray (p.89) ;

NewFKey (TReplLogRecord)

public
 NewFKey: TStringOpenArray (p.89) ;

Separator (TReplLogRecord)

public
 Separator: Char;

Stamp (TReplLogRecord)

public
 Stamp: TDateTime;

FieldDefs (TReplLogRecord)

public
 FieldDefs: TReplFieldDefs (p.52) ;

TReplTargetDatabase
type
 TReplTargetDatabase = class;

Abstraction of a target database

See also
TReplTargetDatabase_IB (p.59) TReplTargetDatabase_Logger (p.60)

Replicator (TReplTargetDatabase)

public
 property Replicator: TIBReplicator (p.62) read;

parent replicator

Interbase Replication Suite Guide

 - 58 -

SQLDialect (TReplTargetDatabase)

public
 property SQLDialect: Integer read;
DATABASES.SQLDIALECT

SynchronizeTable (TReplTargetDatabase)

public
 procedure SynchronizeTable(
 const aSyncRec: TSyncRecord (p.98) ;
 aSrcDB: TIBDatabase;
 var aCounters: TSyncRecordCounters (p.96)); virtual; abstract;

Performs table synchronization from source database according aSyncRec parameters

See also
TIBReplicator (p.62).Synchronize (p.75)

ReplicateRecord (TReplTargetDatabase)

public
 procedure ReplicateRecord(
 const aReplLogRec: TReplLogRecord (p.55) ;
 aReplOptions: Word;
 aConflict: TStream;
 var aCounter: Integer); virtual; abstract;

Performs replication of aReplLogRec record according aReplOptions parameters
aReplOptions :
See also: repoptReplicateLog (p.103) repoptReportToSource (p.103) repoptReportToTarget

(p.104) repoptExtConflictCheck (p.104) repoptTargetReplication (p.104)
aConflict :

Returns conflict description if happened

ObjPrefix (TReplTargetDatabase)

public
 ObjPrefix: string;

Prefix used for replication objects in database, DATABASES.OBJPREFIX

DBId (TReplTargetDatabase)

public
 DBId: Integer;

database identifier, DATABASES.DBID

DBMask (TReplTargetDatabase)

public
 DBMask: Integer;

mask identifying databases in REPL$LOG, SCHEMADB.DBMASK

Interbase Replication Suite Guide

 - 59 -

TReplTargetDatabase_IB
type
 TReplTargetDatabase_IB = class(TReplTargetDataba se (p.57));

Implements target Interbase database functionality

Destroy (TReplTargetDatabase_IB)

public
 destructor Destroy; override;

SynchronizeTable (TReplTargetDatabase_IB)

public
 procedure SynchronizeTable(
 const aSyncRec: TSyncRecord (p.98) ;
 aSrcDB: TIBDatabase;
 var aCounters: TSyncRecordCounters (p.96)); override;

Performs table synchronization from source database according aSyncRec parameters

See also
TIBReplicator (p.62).Synchronize (p.75)

ReplicateRecord (TReplTargetDatabase_IB)

public
 procedure ReplicateRecord(
 const aReplLogRec: TReplLogRecord (p.55) ;
 aReplOptions: Word;
 aConflict: TStream;
 var aCounter: Integer); override;

Performs replication of aReplLogRec record according aReplOptions parameters

Database (TReplTargetDatabase_IB)

public
 Database: TIBDatabase;

SnapshotQ (TReplTargetDatabase_IB)

public
 SnapshotQ: TIBSQL;

TReplTargetDatabase_Logger
type
 TReplTargetDatabase_Logger = class(TReplTargetDa tabase (p.57));

Implements target database as text file/logger functionality

Destroy (TReplTargetDatabase_Logger)

public
 destructor Destroy; override;

Interbase Replication Suite Guide

 - 60 -

SynchronizeTable (TReplTargetDatabase_Logger)

public
 procedure SynchronizeTable(
 const aSyncRec: TSyncRecord (p.98) ;
 aSrcDB: TIBDatabase;
 var aCounters: TSyncRecordCounters (p.96)); override;

Performs table synchronization from source database according aSyncRec parameters

See also
TIBReplicator (p.62).Synchronize (p.75)

ReplicateRecord (TReplTargetDatabase_Logger)

public
 procedure ReplicateRecord(
 const aReplLogRec: TReplLogRecord (p.55) ;
 aReplOptions: Word;
 aConflict: TStream;
 var aCounter: Integer); override;

Performs replication of aReplLogRec record according aReplOptions parameters

Logger (TReplTargetDatabase_Logger)

public
 Logger: TFileLogger;

TReplLogField_IBSQL
type
 TReplLogField_IBSQL = class(TReplLogField (p.54));

Implements source field taken from Interbase

IsNull (TReplLogField_IBSQL)

public
 function IsNull{}: Boolean; override;

TReplLogField_Offline
type
 TReplLogField_Offline = class(TReplLogField (p.54));

Implements source field taken from offline package

IsNull (TReplLogField_Offline)

public
 function IsNull{}: Boolean; override;

Interbase Replication Suite Guide

 - 61 -

TReplLogRecord_Online
type
 TReplLogRecord_Online = class(TReplLogRecord (p.55));

Implements source log record taken from Interbase

Create (TReplLogRecord_Online)

public
 constructor Create(aReplicator: TIBReplicator (p.62));

AssignReplQ (TReplLogRecord_Online)

public
 procedure AssignReplQ(aReplQ: TIBSQL);

AssignFieldQ (TReplLogRecord_Online)

public
 procedure AssignFieldQ(aFieldQ: TIBSQL);

AssignSQ (TReplLogRecord_Online)

public
 procedure AssignSQ(SQ: TIBSQL);

Destroy (TReplLogRecord_Online)

public
 destructor Destroy; override;

FieldQ_Locate (TReplLogRecord_Online)

public
 function FieldQ_Locate(
 aNew: Char;
 aIdx: Integer): TReplLogField (p.54) ; override;

FieldQ_IsEmpty (TReplLogRecord_Online)

public
 function FieldQ_IsEmpty{}: Boolean; override;

TReplLogRecord_Offline
type
 TReplLogRecord_Offline = class(TReplLogRecord (p.55));

Implements source field taken from offline package

Create (TReplLogRecord_Offline)

public
 constructor Create(aReplicator: TIBReplicator (p.62));

Interbase Replication Suite Guide

 - 62 -

Assign (TReplLogRecord_Offline)

public
 procedure Assign(
 const aHeader: TOffHeader (p.90) ;
 const aReplLog: TOffSrcReplLog (p.91));

Destroy (TReplLogRecord_Offline)

public
 destructor Destroy; override;

FieldQ_Locate (TReplLogRecord_Offline)

public
 function FieldQ_Locate(
 aNew: Char;
 aIdx: Integer): TReplLogField (p.54) ; override;

FieldQ_IsEmpty (TReplLogRecord_Offline)

public
 function FieldQ_IsEmpty{}: Boolean; override;

TIBReplicator
type
 TIBReplicator = class(TComponent);

Main VCL class that implements IB Replicator functionality. Multi-threading is supported but one
TIBReplicator instance can serve only one thread.

ConfigDatabase (TIBReplicator)

published
 property ConfigDatabase: TIBDatabase read write;

Configuration database. Set property values before using any method using configuration
database. TIBReplicator (p.62) uses own ConfigDatabaseTransaction (p.64) to access ConfigDatabase .
Note that for multi-threading is necessary create for each thread separate config database
instance and not to use local server TIBDatabase.DatabaseName convention. It's limitation of
Interbase Express library.

 DatabaseName:= 'c:\data\cfgdatabase.gdb'

replace with

 DatabaseName:= 'localhost:/c:/data/cfgdatabase.gd b'

Interbase Replication Suite Guide

 - 63 -

Example:

procedure TIBReplicationServerForm.FormCreate(Sende r: TObject);
begin
...
 IBReplicator.ConfigDatabase.BeforeConnect:= Confi gDatabaseBeforeConnect;
...
end;

procedure TIBReplicationServerForm.ConfigDatabaseBe foreConnect(Sender: TObject);
begin
 with Sender as TIBDatabase do
 begin
 DatabaseName:= IBReplicator.ParseStr(Ini.ReadSt ring(DBIniSection, 'DatabaseName', ''));
 Params.Values['user_name']:= IBReplicator.Parse Str(Ini.ReadString(DBIniSection, 'User', ''));
 Params.Values['password']:= IBReplicator.ParseS tr(IBReplicator.ScramblePassword(IBRepl
 SQLDialect:= Ini.ReadInteger(DBIniSection, 'SQL Dialect', 3);
 end;
end;

ConfigDatabasePrefix (TIBReplicator)

published
 property ConfigDatabasePrefix: string read write;

Prefix of objects in configuration database. It's not necessary unless you need use the same
database for more replicators or share source/target database with configuration database.

DBLog (TIBReplicator)

published
 property DBLog: TLogger read write;

Log used for logging of replication errors and process messages

ReplLog (TIBReplicator)

published
 property ReplLog: TLogger read write;

Log used for logging of replication statistics

LogName (TIBReplicator)

published
 property LogName: string read write;

Log name used in TLogger.Log

Environment (TIBReplicator)

published
 property Environment: TStrings read write;

Local replicator environment used by ParseStr (p.75) to substitute $(VAR) macros

See also
ReadEnvironment (p.74) ParseStr (p.75)

Interbase Replication Suite Guide

 - 64 -

NowAsUTC (TIBReplicator)

published
 property NowAsUTC: Boolean read write;

If True all timestamps will use UTC. Recommended for real time (non unique time due to
daylight saving time) or distributed applications (time zone problem).

LogErrSQLCmds (TIBReplicator)

published
 property LogErrSQLCmds: Boolean read write
 default False;

If True to DBLog (p.63) are logged full SQL commands (raising exception). Useful when adding
condition replication trigger commands to obtain where is error.

See also
DBLog (p.63) LogErrSQLParams (p.64)

LogErrSQLParams (TIBReplicator)

published
 property LogErrSQLParams: Boolean read write
 default False;

If True to DBLog (p.63) are logged full query/stored proc parameter values.

See also
DBLog (p.63) LogErrSQLCmds (p.64)

LogVerbose (TIBReplicator)

published
 property LogVerbose: Boolean read write
 default False;

If True more text is logged.

TraceSQL (TIBReplicator)

published
 property TraceSQL: Boolean read write;

Set True to enable monitoring of SQL commands using a SQL Monitor

See also
TIBDatabase.TraceFlags

ConfigDatabaseTransaction (TIBReplicator)

public
 property ConfigDatabaseTransaction: TIBTransactio n read;

Transaction used for ConfigDatabase (p.64)

CreateConfigDatabase (TIBReplicator)

public
 procedure CreateConfigDatabase(aAllowCreate: Boo lean);

Interbase Replication Suite Guide

 - 65 -

Creates new configuration database or if database file already exists insert/add objects. Note
that TIBReplicator first try to open ConfigDatabase (p.64) so you can set up TIBDatabase.Params in
TIBDatabase.BeforeConnect event.
aAllowCreate :

If database does not exist create new one. Supported only for local databases because uses
FileExists function.

UpgradeConfigDatabase (TIBReplicator)

public
 procedure UpgradeConfigDatabase;

Upgrade ConfigDatabase (p.64) that was created by a former version of IBReplicator. The upgrade
process is safe, no data should be lost. Note that upgraded database won't be compatible to
older IBReplicator.

CheckConfigDatabaseVersion (TIBReplicator)

public
 function CheckConfigDatabaseVersion{}: TDatabaseV ersion (p.89) ;

Check if ConfigDatabase (p.64) is up to date or is upgradeable.

UpgradeDatabase (TIBReplicator)

public
 procedure UpgradeDatabase(aDBId: Integer);

Upgrade source/target database that was used by older version of IBReplicator. The upgrade
process is safe, no data should be lost. But it's recommended replicate all data before upgrade
process is started. Note that upgraded database won't be compatible to older IBReplicator.

GenerateFields (TIBReplicator)

public
 procedure GenerateFields(
 aSchemaId: Integer;
 aTargetGroupId: Integer);

Reads source database and insert relation and fields to the ConfigDatabase (p.64). If source
database changes (new object was added) it updates information in configuration database.
Using is safe - no records will be deleted.
aSchemaId :

Schema of which source database will be read
aTargetGroupId :

Identifies that will be inserted to RELATIONS/FIELDS.GROUPID fields. Target database is not
connected. Obsolete if schema defines record history logging.

CreateSystemObjects (TIBReplicator)

public
 procedure CreateSystemObjects(
 aSchemaId: Integer;
 aKeyLength: Integer;
 aGroupId: Integer;
 aDBId: Integer = 0);

Interbase Replication Suite Guide

 - 66 -

DropSystemObjects (TIBReplicator)

public
 procedure DropSystemObjects(
 aSchemaId: Integer;
 aGroupId: Integer;
 aDBId: Integer = 0;
 aOnlyTriggers: Boolean = False);

CreateServerObjects (TIBReplicator)

public
 procedure CreateServerObjects(
 aSchemaId: Integer;
 aGroupId: Integer;
 aDBId: Integer = 0);

DropServerObjects (TIBReplicator)

public
 procedure DropServerObjects(
 aSchemaId: Integer;
 aGroupId: Integer;
 aDBId: Integer = 0);

CreateSystemObjects (TIBReplicator)

public
 procedure CreateSystemObjects(
 aDBId: Integer;
 aKeyLength: Integer);

Creates / updates all system (replication) objects in database. It prepares database for each
schema in which the database participates.
aDBId :

database identifier
aKeyLength :

Max. length of concatenated primary keys logged into REPL$LOG.

See also
DropSystemObjects (p.66) CreateServerObjects (p.67) DropServerObjects (p.67) DeleteSourceSystemData (p.68)

DropSystemObjects (TIBReplicator)

public
 procedure DropSystemObjects(
 aDBId: Integer;
 aOnlyTriggers: Boolean = False);

Removes system objects of all schemes from database
aDBId :

database identifier
aOnlyTriggers :

- True .. remove only replication triggers, helpful when replication condition is changed
- False .. all replication objects are dropped and replication records are lost.

Interbase Replication Suite Guide

 - 67 -

See also
CreateSystemObjects (p.66) CreateServerObjects (p.67) DropServerObjects (p.67) DeleteSourceSystemData (p.68)

CreateServerObjects (TIBReplicator)

public
 procedure CreateServerObjects(aDBId: Integer);

Creates server objects - SQL users defined in schemes as replication user.
aDBId :

database identifier

See also
DropServerObjects (p.67) CreateSystemObjects (p.66) DropSystemObjects (p.66)

DropServerObjects (TIBReplicator)

public
 procedure DropServerObjects(aDBId: Integer);

Removes server objects - SQL users defined in all schemes as replication user.
aDBId :

database identifier

See also
CreateServerObjects (p.67) CreateSystemObjects (p.66) DropSystemObjects (p.66)

CreateStoredProcedureTemplates (TIBReplicator)

public
 procedure CreateStoredProcedureTemplates(
 aSchemaId: Integer;
 aGroupId: Integer;
 aDBId: Integer);

Creates skeletons of target database stored procedures, i.e. where target relation is selected as
stored procedure.
aSchemaId :

schema identifier
aGroupId :

group identifier
aDBId :

target database identifier, if =0 all target databases

ClearSchemaStatistics (TIBReplicator)

public
 procedure ClearSchemaStatistics(aSchemaId: Integ er);

Clear schema statistics in ConfigDatabase (p.64)

See also
ClearRelationStatistics (p.68)

Interbase Replication Suite Guide

 - 68 -

ClearRelationStatistics (TIBReplicator)

public
 procedure ClearRelationStatistics(
 aSchemaId: Integer;
 aGroupId: Integer;
 aRelationId: Integer);

Clear relation statistics in ConfigDatabase (p.64)

See also
SchemaRelationStatistics

DeleteSourceSystemData (TIBReplicator)

public
 procedure DeleteSourceSystemData(
 aSchemaId: Integer;
 aGroupId: Integer;
 aTgtDBId: Integer = 0);

Delete all replication record that belong to selected schema. REPL$LOG, REPL$MAN, REPL$TRANSFER,
REPL$FIELD are affected. Note that offline packages must be deleted manually.
aSchemaId :

schema identifier
aGroupId :

- =0 .. source database
- <>0 .. target database

aTgtDBId :
if aGroupId<>0 .. identifier of target database, if =0 all target databases

GetSourceDBId (TIBReplicator)

public
 function GetSourceDBId(aSchemaId: Integer): Int eger;

Get database id of the source database

GetSchemaType (TIBReplicator)

public
 function GetSchemaType(aSchemaId: Integer): Int eger;

Returns type of schema, SCHEMATA.SCHEMATYPE
result :
See also: schtReplication (p.103) schtRecordHistory (p.103)

GetDatabaseName (TIBReplicator)

public
 function GetDatabaseName(aDBId: Integer): strin g;

Returns name of database, DATABASES.NAME

GetDatabaseType (TIBReplicator)

public
 function GetDatabaseType(aDBId: Integer): Integ er;

Returns type of database, DATABASES.DBTYPE

Interbase Replication Suite Guide

 - 69 -

result :
See also: dbtInterbase (p.100) dbtLog (p.100)

GetDBMask (TIBReplicator)

public
 function GetDBMask(
 aSchemaId: Integer;
 aGroupId: Integer;
 aDBId: Integer): Integer;

Returns mask that identifies database in REPL$LOG, SCHEMADB.DBMASK

AssignDBParams (TIBReplicator)

public
 function AssignDBParams(
 aDB: TIBDatabase;
 aId: Integer;
 var aName: string;
 var aObjPrefix: string): Boolean;

Assign database parameters according to values stored in ConfigDatabase (p.64) Primary used
when opening database for administration.
aName:

Database name, DATABASES.NAME
aObjPrefix :

Prefix of replication objects, DATABASES.OBJPREFIX

See also
SetDBParams (p.70) SetDBParams_Repl (p.70)

SetDBParams (TIBReplicator)

public
 procedure SetDBParams(
 aDB: TIBDatabase;
 aId: Integer;
 var aObjPrefix: string);

Assign database parameters according to values stored in ConfigDatabase (p.64) (DATABASES) and
connect aDB Primary used when opening database for administration.
aObjPrefix :

Prefix of replication objects, DATABASES.OBJPREFIX

See also
AssignDBParams (p.69) SetDBParams_Repl (p.70)

Interbase Replication Suite Guide

 - 70 -

SetDBParams_Repl (TIBReplicator)

public
 procedure SetDBParams_Repl(
 aDB: TIBDatabase;
 aSchemaId: Integer;
 aGroupId: Integer;
 aDBId: Integer;
 aAlternateTgt: Boolean;
 var aObjPrefix: string);

Assign database parameters according to values stored in ConfigDatabase (p.64) (SCHEMADB) and
connect aDB. Primary used when opening database for replication.
aAlternateTgt :

- True .. used when offline database replicates to log file (dbtLog (p.100))
aObjPrefix :

Prefix of replication objects

See also
AssignDBParams (p.69) SetDBParams (p.70)

SetDBServiceParams (TIBReplicator)

public
 procedure SetDBServiceParams(
 aDBServ: TIBControlService;
 aDBId: Integer;
 var aDatabaseFileName: string);

SetDBServiceParams (TIBReplicator)

public
 procedure SetDBServiceParams(
 aDBServ: TIBControlService;
 aDB: TIBDatabase;
 const aDatabaseName: string;
 var aDatabaseFileName: string);

Assign Interbase service parameters according to values stored in ConfigDatabase (p.64).
aDatabaseName :

DATABASES.NAME
aDatabaseFileName :

Database file name compatible to service, server identifier is stripped

GetDBProtocol (TIBReplicator)

public
 class function GetDBProtocol(
 aDatabaseName: string;
 var aServerName: string;
 var aDatabaseFileName: string): IBServices.T Protocol;

Strip database name
aDatabaseName :

Parsed database name
aServerName :

Server name, Local server if aDatabaseName defines a local server database

Interbase Replication Suite Guide

 - 71 -

aDatabaseFileName :
Database file name

result :
Type of protocol

See also
TIBDatabase.DatabaseName

DBSQLExec (TIBReplicator)

public
 function DBSQLExec(
 aDB: TIBDatabase;
 aSQL: string;
 aTrans: TIBTransaction = nil): Integer;

Safe SQL execution.
aTrans :

If nil .. DefaultTransaction is used. If not in transaction start it.

See also
LogErrSQLCmds (p.64) DBLog (p.63) DBSQLRecord (p.71) SafeExecQuery (p.73) SafeExecProc (p.73)

DBSQLRecord (TIBReplicator)

public
 function DBSQLRecord(
 aDB: TIBDatabase;
 aSQL: string;
 aTrans: TIBTransaction = nil): Variant;

Safe SQL execution.
aTrans :

If nil .. aDB.DefaultTransaction is used. If not in transaction start it.

See also
LogErrSQLCmds (p.64) DBLog (p.63) DBSQLRecord SafeExecQuery (p.73) SafeExecProc (p.73)

SafeStartTransaction (TIBReplicator)

public
 procedure SafeStartTransaction(T: TIBTransaction);

See also
TIBTransaction.StartTransaction

SafeCommit (TIBReplicator)

public
 procedure SafeCommit(
 T: TIBTransaction;
 aRetaining: Boolean = False);

See also
TIBTransaction.Commit TIBTransaction.CommitRetaining

Interbase Replication Suite Guide

 - 72 -

SafeRollback (TIBReplicator)

public
 procedure SafeRollback(
 T: TIBTransaction;
 aRetaining: Boolean = False;
 aDoNotRaise: Boolean = True);

See also
TIBTransaction.Rollback TIBTransaction.RollbackRetaining

SafeNext (TIBReplicator)

public
 procedure SafeNext(Q: TIBSQL);

SafeNext (TIBReplicator)

public
 procedure SafeNext(Q: TIBDataSet);

See also
TIBDataSet.Next

SafeOpen (TIBReplicator)

public
 procedure SafeOpen(Q: TIBDataSet);

See also
TIBDataSet.Open

SafeClose (TIBReplicator)

public
 procedure SafeClose(
 Q: TIBDataSet;
 aDoNotRaise: Boolean = True);

SafeClose (TIBReplicator)

public
 procedure SafeClose(
 Q: TIBSQL;
 aDoNotRaise: Boolean = True);

See also
TIBSQL.Close

SafeExecQuery (TIBReplicator)

public
 procedure SafeExecQuery(Q: TIBSQL);

See also
TIBSQL.ExecQuery

Interbase Replication Suite Guide

 - 73 -

SafeExecProc (TIBReplicator)

public
 procedure SafeExecProc(Q: TIBStoredProc);

See also
TIBStoredProc.ExecProc

Now2 (TIBReplicator)

public
 function Now2{}: TDateTime;

Returns timestamp according to NowAsUTC (p.64)

ClearCachedList (TIBReplicator)

public
 procedure ClearCachedList;

Clear all cached values read from ConfigDatabase (p.64). Values are kept in memory to improve
replication performance.

See also
ReadCachedFields CachedList

DBEnvironmentWriteValue (TIBReplicator)

public
 procedure DBEnvironmentWriteValue(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 const aName: string;
 const aValue: string);

Writes variable to REPL$ENVIRONMENT table
aName:

Variable name
aValue :

Variable value

See also
DBEnvironmentWriteValues (p.74) DBEnvironmentReadValue (p.74) DBEnvironmentReadValues (p.74)

DBEnvironmentReadValue (TIBReplicator)

public
 function DBEnvironmentReadValue(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 const aName: string;
 const aDefault: string = ''): string;

Reads variable from REPL$ENVIRONMENT table
aName:

Variable name
aDefault :

Value returned if variable not found

Interbase Replication Suite Guide

 - 74 -

See also
DBEnvironmentWriteValue (p.74) DBEnvironmentWriteValues (p.74) DBEnvironmentReadValues (p.74)

DBEnvironmentWriteValues (TIBReplicator)

public
 procedure DBEnvironmentWriteValues(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 aValues: TStrings);

Writes variables to REPL$ENVIRONMENT table

See also
DBEnvironmentReadValues (p.74) DBEnvironmentReadValue (p.74) DBEnvironmentWriteValue (p.74)

DBEnvironmentReadValues (TIBReplicator)

public
 procedure DBEnvironmentReadValues(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 aValues: TStrings;
 aSystemKeys: Boolean = False);

Reads variables from REPL$ENVIRONMENT table
aSystemKeys :

If True that keys prefixed by an underscore '_' are read.

See also
DBEnvironmentWriteValues (p.74) DBEnvironmentWriteValue (p.74) DBEnvironmentReadValue (p.74)

ReadEnvironment (TIBReplicator)

public
 function ReadEnvironment(
 const aName: string;
 const aDefault: string = '';
 aDB: TIBDatabase = nil;
 const aObjPrefix: string = ''): string;

Reads variable from IBReplicator environment if following sequence
• implicit variables (_VER_,_DIR_,DBID,...)
• Environment (p.63)
• REPL$ENVIRONMENT table in aDB database (if not nil)
• ENVIRONMENT table in ConfigDatabase (p.64)
• system environment, keys prefixed IBREPL_
• system environment
Implicit variables vary when function is called
• _DIR_ .. program directory
• _VER_ .. IBReplicator version
• SCHEMAID .. schema id
• GROUPID .. groupid
• DBID .. database id
• DB2ID .. target database in offline replication
• OFFDIR .. offline temporary directory

Interbase Replication Suite Guide

 - 75 -

In ENVIRONMENT table exists
• _VERSION .. database version
aDefault :

returns if variable not found

See also
ParseStr

ParseStr (TIBReplicator)

public
 function ParseStr(
 const aPar: string;
 aDB: TIBDatabase = nil;
 const aObjPrefix: string = ''): string;

Searches macros commands in aPar and replaces them with environment values. Macro is
$(NAME) string.

Example:

ParseStr('$(TEMP)\file.tmp, nil, '')

returns 'C:\WINDOWS\TEMP\file.tmp' because TEMP is defined in system environment

ParseStr('$(_DIR_)\Log\Repl_$(SCHEMAID)_$(GROUPID)_ $(DBID).txt, nil, '')

returns e.g. C:\Program files\IBReplicator\Log\Repl_1_1_2.txt

Synchronize (TIBReplicator)

public
 procedure Synchronize(
 aSchemaId: Integer;
 const aGroupIds: TIntegerOpenArray (p.89) ;
 const aTgtDBIds: TIntegerOpenArray (p.89));

Executes source and target database synchronization
aSchemaId :

schema identifier
aGroupIds :

group identifiers (empty to process all groups)
aTgtDBIds :

target database identifiers (empty to process all databases)

DecodeSyncActions (TIBReplicator)

public
 class function DecodeSyncActions(
 const aActS: string;
 aResolve: Boolean): TSyncActions (p.97) ;

Decodes synchronization actions, RELATION/SYNCACTION

EncodeSyncActions (TIBReplicator)

public
 class function EncodeSyncActions(const aActions: TSyncActions (p.97)): string;

Encodes synchronization actions, RELATION/SYNCACTION

Interbase Replication Suite Guide

 - 76 -

ReplicateOnline (TIBReplicator)

public
 procedure ReplicateOnline(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 const aSchemaIds: TIntegerOpenArray (p.89) ;
 const aGroupIds: TIntegerOpenArray (p.89) ;
 const aTgtDBIds: TIntegerOpenArray (p.89) ;
 aReplOptions: Word);

Executes online replication from whole schema
aDB:

source database
aObjPrefix :

prefix of replication objects in source database
aSchemaIds :

schema identifier(s)
aGroupIds :

group identifiers (empty to process all groups)
aTgtDBIds :

target database identifiers (empty to process all databases)
aReplOptions :

see TReplTargetDatabase (p.57).ReplicateRecord (p.58)

SourceOfflineBatch (TIBReplicator)

public
 procedure SourceOfflineBatch(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 const aSchemaIds: TIntegerOpenArray (p.89) ;
 const aGroupIds: TIntegerOpenArray (p.89) ;
 const aTgtDBIds: TIntegerOpenArray (p.89) ;
 const aOfflineDir: string;
 aReceiveData: Boolean;
 aProcessReceived: Boolean;
 aProcess: Boolean;
 aSendData: Boolean;
 aResendData: Boolean);

Executes selected offline replication actions on source database
aDB:

source database
aObjPrefix :

prefix of replication objects in source database
aSchemaIds :

schema identifier(s)
aGroupIds :

group identifiers (empty to process all groups)
aTgtDBIds :

target database identifiers (empty to process all databases)
aOfflineDir :

offline directory where are stored offline packages. Value is processed using ParseStr (p.75)
aReceiveData :

receive acknowledge packages

Interbase Replication Suite Guide

 - 77 -

aProcessReceived :
processed received packages

aProcess :
process records in REPL$LOG

aSendData :
send prepared (and pending) offline packages

aResendData :
resend unacknowledged packages

See also
TargetOfflineBatch (p.78) ReceivePackages (p.80) SendPendingPackages (p.80) ProcessReceivedPackages (p.81)

PrepareSourceOfflinePackageToFile (TIBReplicator)

public
 function PrepareSourceOfflinePackageToFile(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 aSchemaId: Integer;
 aGroupId: Integer;
 aSrcDbId: Integer;
 aTgtDBId: Integer;
 const aOfflineDir: string;
 aIfReplRecord: Boolean): Integer;

process records in REPL$LOG and creates offline package
aDB:

source database
aObjPrefix :

prefix of replication objects in source database
aSchemaId :

schema identifier
aGroupId :

schema identifier
aSrcDbId :

source database id
aTgtDBId :

target database id
aOfflineDir :

offline directory where are stored offline packages
aIfReplRecord :

- True .. generates package only if some record exist in REPL$LOG
- False .. generates even if no REPL$LOG record. Enables sending of 3rd phase acknowledges

if log is empty
result :

id of created transfer package

See also
SourceOfflineBatch (p.76)

Interbase Replication Suite Guide

 - 78 -

TargetOfflineBatch (TIBReplicator)

public
 procedure TargetOfflineBatch(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 const aSchemaIds: TIntegerOpenArray (p.89) ;
 const aGroupIds: TIntegerOpenArray (p.89) ;
 const aTgtDBIds: TIntegerOpenArray (p.89) ;
 const aOfflineDir: string;
 aReceiveData: Boolean;
 aProcess: Boolean;
 aSendData: Boolean;
 aResendData: Boolean;
 aReplOptions: Word);

Executes offline replication actions on target database
aDB:

target database
aObjPrefix :

prefix of replication objects in target database
aSchemaIds :

schema identifier(s)
aGroupIds :

group id identifier
aTgtDBIds :

target database identifier (empty to process all databases)
aOfflineDir :

offline directory where are stored offline packages. Value is processed using ParseStr (p.75)
aReceiveData :

receive source packages
aProcess :

process received packages
aSendData :

send acknowledge packages
aResendData :

resend unacknowledged packages
aReplOptions :

see TReplTargetDatabase (p.57).ReplicateRecord (p.58)

See also
SourceOfflineBatch (p.76) ProcessSourceOfflinePackageAndPrepareTargetOfflineP ackageToFile (p.79)
ReceivePackages (p.80) SendPendingPackages (p.80) ProcessReceivedPackages (p.81)

Interbase Replication Suite Guide

 - 79 -

ProcessSourceOfflinePackageAndPrepareTargetOfflinePackageToFile (TIBReplicator)

public
 function ProcessSourceOfflinePackageAndPrepareTar getOfflinePackageToFile(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 aSchemaId: Integer;
 aGroupId: Integer;
 aSrcDBId: Integer;
 aTgtDBId: Integer;
 const aOfflineDir: string;
 Src: TStream;
 aStampRec: TDateTime;
 aReplOptions: Word;
 var aStamp: TDateTime): Integer;

process offline package and prepare acknowledge package (in target database)
aDB:

target database
aObjPrefix :

prefix of replication object in target database
aSchemaId :

schema identifier
aGroupId :

group identifier
aSrcDBId :

source database identifier
aTgtDBId :

target database identifier
aOfflineDir :

offline directory where are stored offline packages
Src :

source package stream
aStampRec :

timestamp when received
aReplOptions :

see TReplTargetDatabase (p.57).ReplicateRecord (p.58)
aStamp :

returns timestamp when processed
result :

id of created acknowledge transfer package

See also
TargetOfflineBatch (p.78)

DecodePackage (TIBReplicator)

public
 procedure DecodePackage(
 Src: TStream;
 var St: TStream);

Decodes received package using encoder DLL libraries

Interbase Replication Suite Guide

 - 80 -

ReceivePackages (TIBReplicator)

public
 procedure ReceivePackages(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 aSchemaId: Integer;
 aStatus: Char;
 aGroupId: Integer;
 aSrcDbId: Integer;
 aTgtDBId: Integer;
 const aOfflineDir: string);

receive offline packages and store them in offline dir. Receiving is done using transfer library.
aDB:

source/target database
aObjPrefix :

prefix of replication objects
aSchemaId :

schema identifier
aStatus :

type of offline packages ('S','T')
aGroupId :

group identifier
aSrcDbId :

source database id
aTgtDBId :

target database id
aOfflineDir :

offline directory where are stored offline packages

See also
DecodePackage (p.79) SourceOfflineBatch (p.76) TargetOfflineBatch (p.78)

SendPendingPackages (TIBReplicator)

public
 procedure SendPendingPackages(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 aSchemaId: Integer;
 aStatus: Char;
 aGroupId: Integer;
 aSrcDbId: Integer;
 aTgtDBId: Integer;
 const aOfflineDir: string;
 aResendData: Boolean);

Receives pending (unsent) offline packages stored in offline dir. Sending is done using encoder
and transfer libraries.
aDB:

source/target database
aObjPrefix :

prefix of replication objects
aSchemaId :

schema identifier

Interbase Replication Suite Guide

 - 81 -

aStatus :
type of offline packages ('S','T')

aGroupId :
group identifier

aSrcDbId :
source database id

aTgtDBId :
target database id

aOfflineDir :
offline directory where are stored offline packages

aResendData :
resend unacknowledged packages

See also
SourceOfflineBatch (p.76) TargetOfflineBatch (p.78)

ProcessReceivedPackages (TIBReplicator)

public
 procedure ProcessReceivedPackages(
 aDB: TIBDatabase;
 const aObjPrefix: string;
 aSchemaId: Integer;
 aStatus: Char;
 aGroupId: Integer;
 aSrcDbId: Integer;
 aTgtDBId: Integer;
 const aOfflineDir: string;
 aReplOptions: Word);

Processes received (unprocessed) packages.
aDB:

source/target database
aObjPrefix :

prefix of replication objects
aSchemaId :

schema identifier
aStatus :

type of offline packages ('S','T')
aGroupId :

group identifier
aSrcDbId :

source database id
aTgtDBId :

target database id
aOfflineDir :

offline directory where are stored offline packages
aReplOptions :

see TReplTargetDatabase (p.57).ReplicateRecord (p.58)

See also
SourceOfflineBatch (p.76) TargetOfflineBatch (p.78)

Interbase Replication Suite Guide

 - 82 -

ExecSQLScript (TIBReplicator)

public
 procedure ExecSQLScript(
 aSchemaId: Integer;
 aGroupId: Integer;
 aDBId: Integer;
 aFromSeqId: Integer;
 aToSeqId: Integer;
 aSnapshot: Boolean;
 aFromDT: TDateTime;
 aToDT: TDateTime;
 aSQL: TStream;
 var aCntTotal: Integer;
 var aCntProc: Integer;
 var aCntBlob: Integer);

Procedure processes a SQL script to a source/target database. If the SQL script is a log made
by replicator that contains special tags (SEQID, stamp and BLOB content) condition may by
applied and the BLOB fields are updated. Table REPL$SNAPSHOT is also affected. If no condition is
used all commands are processed.
aSchemaId :

schema identifier
aGroupId :

group identifier
aDBId :

- = 0 .. process to source database
- > 0 .. process to target database

aFromSeqId :
low bound of SEQID condition, zero to minus infinity

aToSeqId :
high bound of SEQID condition, zero to infinity

aSnapshot :
if True and SEQID is found in SQL log then update REPL$SNAPSHOT table (if SEQID is greater
than id found in REPL$SNAPSHOT table).

aFromDT:
low bound of datetime condition, zero to minus infinity

aToDT:
high bound of datetime condition, zero to infinity

aSQL:
a stream containing the SQL script

aCntTotal :
number of SQL commands found in SQL script

aCntProc :
number of processed SQL commands (according condition and success)

aCntBlob :
number of processed BLOBs meta SQL commands

Interbase Replication Suite Guide

 - 83 -

BackupDatabase (TIBReplicator)

public
 procedure BackupDatabase(
 aDB: TIBDatabase;
 const aDatabaseName: string;
 const aBackupFileName: string;
 aOptions: TBackupOptions = [ConvertExtTables]);

RestoreDatabase (TIBReplicator)

public
 procedure RestoreDatabase(
 aDB: TIBDatabase;
 const aDatabaseName: string;
 const aBackupFileName: string;
 aOptions: TRestoreOptions = [Replace];
 aPageSize: Integer = 4096);

BackupDatabase (TIBReplicator)

public
 procedure BackupDatabase(
 aDBId: Integer;
 const aBackupFileName: string;
 aOptions: TBackupOptions = [ConvertExtTables]);

Backups database to GBAK compatible format.
aDBId :

Database identifier
aBackupFileName :

Backups database to GBAK compatible format.
See also: RestoreDatabase (p.83)
aOptions :

Backup options, see IBX documentation

See also
RestoreDatabase (p.83)

RestoreDatabase (TIBReplicator)

public
 procedure RestoreDatabase(
 aDBId: Integer;
 const aBackupFileName: string;
 aOptions: TRestoreOptions = [Replace];
 aPageSize: Integer = 4096);

Restores database from GBAK compatible format. If database already exists data in database is
replaced and data lost.
aDBId :

Database identifier
aBackupFileName :

Restore input file name. Value is processed using ParseStr (p.75)
aOptions :

Restore options, see IBX documentation

Interbase Replication Suite Guide

 - 84 -

aPageSize :
Database page size

See also
BackupDatabase (p.83)

CloneSourceDatabase (TIBReplicator)

public
 procedure CloneSourceDatabase(
 aSchemaId: Integer;
 aGroupId: Integer;
 aDBId: Integer;
 const aMetadataOnly: Boolean);

Procedure clones source database, removes all replication objects, replaces target database
and creates replication objects. If target database already exists is replaced and data are lost.
aSchemaId :

schema identifier
aGroupId :

group identifier
aDBId :

target database id
aMetadataOnly :

if True no data will be added, cloned database remains empty

ScramblePassword (TIBReplicator)

public
 class function ScramblePassword(
 aPass: string;
 aEncode: Boolean): string;

Scrambles password not to be human readable
aEncode :

scramble/unscramble switch

IsScrambled (TIBReplicator)

public
 class function IsScrambled(const aPass: string) : Boolean;

Returns True if aPass is already scrambled

OfflinePackageToXML (TIBReplicator)

public
 function OfflinePackageToXML(
 aSrc: TStream;
 aHeaderOptions: Byte): UTF8String;

Converts content of an offline package to XML file according offpackage.dtd.
aSrc :

offline package
aHeaderOptions :

- 0 .. do not write <?xml version ...?> header - 1 .. do not write <!DOCTYPE ... > header - 2 ..
write headers

Interbase Replication Suite Guide

 - 85 -

See also
ConflictToXML (p.85)

ConflictToXML (TIBReplicator)

public
 function ConflictToXML(
 Src: TStream;
 aHeaderOptions: Byte): UTF8String;

Converts content of an conflict description to XML file according conflict.dtd. Description is
stored in REPL$MAN.CONFLICT.
aHeaderOptions :

- 0 .. do not write <?xml version ...?> header - 1 .. do not write <!DOCTYPE ... > header - 2 ..
write headers

See also
OfflinePackageToXML (p.84)

Create (TIBReplicator)

public
 constructor Create(aOwner: TComponent); overrid e;

Destroy (TIBReplicator)

public
 destructor Destroy; override;

OnUpdateStatus (TIBReplicator)

published
 property OnUpdateStatus: TOnUpdateStatusEvent (p.96) read write;

Event called from ReplicateOnline (p.76), Synchronize (p.75) and
ProcessSourceOfflinePackageAndPrepareTargetOfflineP ackage to inform application about progress.

ManualStop (TIBReplicator)

public
 ManualStop: Boolean;

Enabled to stop a long term replication/synchronization process. Note that is periodically
processed message queue. Set true to stop processing.

See also
TApplication.ProcessMessages

EIBReplicatorError
type
 EIBReplicatorError = class(Exception);

Replicator exception class

See also
IBReplicatorError (p.88)

Interbase Replication Suite Guide

 - 86 -

Kind (EIBReplicatorError)

published
 Kind: Byte;

- 1 .. replication conflict
- 2 .. replication error
- 0 .. other

IBDT2DT
function IBDT2DT(S: string): TDateTime;

Converts an Interbase datetime to TDateTime, international settings independent

DT2IBDT
function DT2IBDT(DT: TDateTime): string;

Converts TDateTime to Interbase datetime, international settings independent

DT2OffStamp
function DT2OffStamp(DT: TDateTime): TOffStamp (p.89) ;

Converts TDateTime to TOffStamp

OffStamp2DT
function OffStamp2DT(S: TOffStamp (p.89)): TDateTime;

Converts TOffStamp to TDateTime

NowUTC
function NowUTC{}: TDateTime;

Returns datetime in UTC (universal time coordinate) (=GMT .. Greenwich mean time)

Blob2SafeSQL
function Blob2SafeSQL(const S: string): string;

Strip dangerous chars from blob (used for logging to SQL text script)

CheckIBConnectionError
function CheckIBConnectionError(
 E: Exception;
 aDB: TIBDatabase): Boolean;

Check if exception is raised due a DB connection problem.

Interbase Replication Suite Guide

 - 87 -

E:
Exception instance from except clause

aDB:
database to force close if connection is lost

See also: TIBDatabase.ForceClose
result :

True if connection is lost

CheckDatabaseName
procedure CheckDatabaseName(const aDatabaseName: s tring);

Checks if aDatabaseName is not Local server database when current thread is not MainThread .

See also
Server settings (p.29) Database properties (p.17)

IntegerToIntegerArray
function IntegerToIntegerArray(const I: Integer): TIntegerOpenArray (p.89) ;

NullIntegerArray
function NullIntegerArray{}: TIntegerOpenArray (p.89) ;

StringArrayToIntegerArray
function StringArrayToIntegerArray(const aArr: TSt ringOpenArray (p.89)): TIntegerOpenArray

Converts a TStringOpenArray to TIntegerOpenArray

IntegerArrayToStringArray
function IntegerArrayToStringArray(const aArr: TIn tegerOpenArray (p.89)): TStringOpenArray

Converts a TIntegerOpenArray to TStringOpenArray

StringToArray
function StringToArray(
 S: string;
 aSeparator: Char): TStringOpenArray (p.89) ;

Converts string to TStringOpenArray
aSeparator :

Identifies character that separates items in string

Interbase Replication Suite Guide

 - 88 -

ArrayToString
function ArrayToString(
 const aArr: TStringOpenArray (p.89) ;
 const aSep: string): string;

Converts a TStringOpenArray to string
aSep:

Identifies character that will separate items in string

IntegerArrayToSQLCondition
function IntegerArrayToSQLCondition(
 const aArr: TIntegerOpenArray (p.89) ;
 const aField: string;
 const aPrefix: string = '';
 const aSuffix: string = ''): string;

Creates SQL condition according aArr . If array is empty returns empty string, if aArr is one-item
array returns FIELD=x, if there are more items returns FIELD IN (x,y,z).
aPrefix :

Prefix added prior to result
aSuffix :

Prefix added to result

IBReplicatorError
procedure IBReplicatorError(
 const Msg: string;
 aKind: Byte);

Raises EIBReplicatorError (p.85)
Msg:

Message
aKind :

- 1..replication conflict
- 2..replication error
- 0..other error (don't write to REPL$MAN)

Register
procedure Register;

Use by IDE to register components

Interbase Replication Suite Guide

 - 89 -

TDatabaseVersion
type
 TDatabaseVersion =
 (verCurrent
 , verUpgradable
 , verNonUpgradable
);

Used by TIBReplicator (p.62).CheckConfigDatabaseVersion (p.65) to detect config database compatibility
verCurrent :

Config databases is up to date
verUpgradable :

Config database is not up to date but is upgradable using TIBReplicator

(p.62).UpgradeConfigDatabase (p.65)
verNonUpgradable :

Config database cannot be upgraded automatically

TStringOpenArray
type
 TStringOpenArray = array of string;

An open array that stores list of strings

TIntegerOpenArray
type
 TIntegerOpenArray = array of Integer;

An open array that stores list of integers

TOffStamp
type
 TOffStamp = array[1 .. 9] of Char;

Platform independent timestamp (no double, float cross platform incompatibility)

TRelName
type
 TRelName = array[1 .. 30] of Char;

A name of relation of a Interbase object

Interbase Replication Suite Guide

 - 90 -

TOffHeader
type
 TOffHeader = record
 Magic: TOffMagic;
 SchemaId: LongInt;
 TransferId: LongInt;
 Status: Char;
 SrcDBId: LongInt;
 TgtDBId: LongInt;
 GroupId: LongInt;
 Stamp: TOffStamp (p.89) ;
 Crc: TCRC32;
 Reserved: array[0 .. 15 + 7] of Byte;
 end {TOffHeader};

A header of an offline package
Magic :

Magic number identifying offline package
SchemaId :

Schema contained in offline package
TransferId :

Transfer identifier
Status :

- 'S' .. package created on the source side
- 'T' .. package created on the target side

SrcDBId :
Source database identifier

TgtDBId :
Target database identifier

GroupId :
Database group identifier

Stamp:
Timestamp when package was created

Crc :
CRC of the package

Reserved :
Reserved for future use

TOffSrcRelDefField
type
 TOffSrcRelDefField = record
 FieldType: Byte;
 Name: TRelName (p.89) ;
 end {TOffSrcRelDefField};

Field definition in the source relation
FieldType :

Type of field
- 1..primary field
- 2..foreign field
- 3..normal field

Interbase Replication Suite Guide

 - 91 -

Name:
Field name

See also
TOffSrcRelDef (p.91)

TOffSrcRelDef
type
 TOffSrcRelDef = record
 RecType: Byte;
 RelationId: LongInt;
 Name: TRelName (p.89) ;
 Count: Word;
 end {TOffSrcRelDef};

Source relation definition
RecType :

Must be equal to offrtRelationDef (p.102)
RelationId :

Relation identifier
Name:

Relation name
Count :

Count of fields in relation
Follows:

 Fields: array[0..Count-1] of TOffSrcRelDefField;

See also
TOffSrcRelDefField (p.90)

TOffSrcReplLog
type
 TOffSrcReplLog = record
 RecType: Byte;
 RelationId: LongInt;
 SeqId: LongWord;
 RepType: Char;
 Sep: Char;
 Stamp: TOffStamp (p.89) ;
 Options: Byte;
 end {TOffSrcReplLog};

Structure contains one REPL$LOG record.
First occurrence must be proceeded by a relation definition (p.91)
RecType :

Must be equal to offrtReplLog (p.102)
RelationId :

Relation identifier

Interbase Replication Suite Guide

 - 92 -

SeqId :
Seq. identifier from REPL$LOG.SEQID

RepType :
Replication type from REPL$LOG.REPLTYPE

Sep:
Separator used as delimiter of primary keys. Equivalent of REPL$LOG.SEPARATOR

Stamp:
Timestamp from REPL$LOG.STAMP

Options :
See optxxxx constants
Follows:

 Keys: array of Char; // string(OLDKEY, NEWKEY, N EWFKEY (in new package is empty))
 if Options and optIsForeignRecord <> 0
 begin
 NewForeignRecord: TOffSrcRelRec;
 OldForeignRecord: TOffSrcRelRec;
 end;
 if Options and optIsRelRecord <> 0
 RelRecord: TOffSrcRelRec;

If IsRelRecord <> 0 then follows:
See also: optIsRelRecord optIsForeignRecord optUTF8

See also
TOffSrcRelRec (p.92)

TOffSrcRelRec
type
 TOffSrcRelRec = record
 FieldCount: Word;
 end {TOffSrcRelRec};

Structure contains one source relation record
FieldCount :

Count of fields in array that follows:

 Values: array[0..Count-1] of TOffReplRecValue;

See also
TOffReplRecValue (p.92)

TOffReplRecValue
type
 TOffReplRecValue = record
 DataType: Char;
 FieldType: Byte;
 end {TOffReplRecValue};

Value of a field in source relation

Interbase Replication Suite Guide

 - 93 -

DataType :
Type of a value that follows:
- N .. null
- C .. string(65535), follows Len: Word; Wide/UTF8 String
- M .. memo longstring, follows Len: LongWord; Wide/UTF8 String
- O .. blob/binary, follows Len: LongWord; Data
- D .. date, follows yyyymmdd
- T .. time, follows hhnnss
- S .. datetime, follows yyyymmddhhnnsszzz
- B .. Byte, follows Byte
- I .. Integer, follows LongInt
- J .. Int64, follows Int64
- F .. float, follows extended
- ' ' .. field not found, follows Len: longword; widestring

FieldType :
Type of field TFieldType

TOffTgtReplAckRec
type
 TOffTgtReplAckRec = record
 Flag: Byte;
 SeqId: LongInt;
 end {TOffTgtReplAckRec};

Result of record replication
Flag :

See ackflxxx constants
See also: ackflManual ackflReasonStr ackflConflict
Follows:

if Flags and ackflReasonStr <> 0 then
 Len: Word; ReasonStr: UTF8String;
if Flags and ackflConflict <> 0 then
begin
 Conflict: TOffTgtReplAckConflictRec;
end;

SeqId :
Sequential id of corresponding REPL$LOG.SEQID record

TOffTgtReplAckConflictRec
type
 TOffTgtReplAckConflictRec = record
 Flag: Byte;
 Stamp: TOffStamp (p.89) ;
 TgtDBId: LongInt;
 Count: Word;
 end {TOffTgtReplAckConflictRec};

The structure describes record conflict
Flag :

Reason of conflict

Interbase Replication Suite Guide

 - 94 -

See also: confoptPrimaryKeyViolation confoptRecordViolation confoptFieldViolation
Stamp:

Stamp when conflict occurred
TgtDBId :

Target database identifier
Count :

Number of fields if record
Follows:

 TgtRelationName: string }
 Values: array[0..Count-1] of packed record
 begin
 SrcFieldName: string[Length(SrcFieldName)];
 SrcValue: TOffReplRecValue;
 TgtFieldName: string[Length(TgtFieldName)];
 TgtValue: TOffReplRecValue;
 end;

See also
TOffTgtReplAckRec (p.93)

TOffTgtReplAck
type
 TOffTgtReplAck = record
 RecType: Byte;
 TransferIdAck: LongInt;
 StampRec: TOffStamp (p.89) ;
 StampProc: TOffStamp (p.89) ;
 ProcCount: LongInt;
 end {TOffTgtReplAck};

Record contained in 2nd phase acknowledge package
RecType :

Must be equal to offrtReplAck (p.102)
TransferIdAck :

Identified of the source transfer id
StampRec :

Timestamp when source package was received
StampProc :

Timestamp when source package was processed
ProcCount :

Number of processed records
Follows:

 SeqIds: array[0..ProcCount-1] of TOffTgtReplAckRe c;

See also
TOffTgtReplAckRec (p.93)

Interbase Replication Suite Guide

 - 95 -

TOffSrcReplAckAck
type
 TOffSrcReplAckAck = record
 RecType: Byte;
 TransferId: LongInt;
 TransferIdAck: LongInt;
 StampSent: TOffStamp (p.89) ;
 StampRec: TOffStamp (p.89) ;
 StampProc: TOffStamp (p.89) ;
 end {TOffSrcReplAckAck};

Record contained in 3rd phase acknowledge package
RecType :

Must be equal to offrrtReplAckAck (p.102)
TransferId :

Identified of 1st pass transfer package
TransferIdAck :

Identifier of 2nd phase transfer package
StampSent :

Timestamp when 1st phase package was sent
StampRec :

Timestamp when 2nd phase acknowledge was received
StampProc :

Timestamp when 2nd phase was processed

TOffTgtReplAckAckAck
type
 TOffTgtReplAckAckAck = record
 RecType: Byte;
 TransferIdAck: LongInt;
 StampSent: TOffStamp (p.89) ;
 end {TOffTgtReplAckAckAck};

Record contained in 4th phase acknowledge package
RecType :

Must be equal to offrrtReplAckAckAck (p.102)
TransferIdAck :

Identifier of 2nd phase transfer package
StampSent :

Timestamp when 2nd phase package was sent

TOffReplResend
type
 TOffReplResend = record
 RecType: Byte;
 TransferId: LongInt;
 TransferIdAck: LongInt;
 StampRec: TOffStamp (p.89) ;
 StampProc: TOffStamp (p.89) ;
 end {TOffReplResend};

Interbase Replication Suite Guide

 - 96 -

Record used for REPL$TRANSFER record
RecType :

Must be equal to offrReplResend (p.103)
TransferId :

REPL$TRANSFER.TRANSFERID, identifier of record
TransferIdAck :

REPL$TRANSFER.TRANSFERID_ACK
StampRec :

REPL$TRANSFER.STAMP_REC
StampProc :

REPL$TRANSFER.STAMP_PROC

TOnUpdateStatusEvent
type
 TOnUpdateStatusEvent = procedure (
 Sender: TObject;
 aTicks: LongWord;
 aCnt: LongWord) of object;

Prototype of a function called when TIBReplicator (p.62) is working
aTicks :

Number of ticks elapsed since start
aCnt :

Number of processed records

Example:

// indicate replication performance at status bar
 procedure TIBReplDataModule.UpdateStatusLine(Sende r: TObject; aTicks, aCnt: Longword);
 begin
 StatusBar.Panels[1].Text:= IntToStr(aTicks div 1 000);
 StatusBar.Panels[2].Text:= IntToStr(aCnt);
 if aTicks = 0 then
 StatusBar.Panels[3].Text:= '0'
 else
 StatusBar.Panels[3].Text:= FloatToStrF(aCnt / (aTicks / 1000 / 60), ffGeneral, 2, 0);
 end;

TSyncRecordCounters
type
 TSyncRecordCounters = record
 Total: Integer;
 Inserted: Integer;
 Updated: Integer;
 Deleted: Integer;
 Errors: Integer;
 Conflicts: Integer;
 StartTick: LongWord;
 end {TSyncRecordCounters};

Structure to store synchronization counters

Interbase Replication Suite Guide

 - 97 -

Total :
Total number of processed records

Inserted :
Number of inserted records

Updated :
Number of updated records

Deleted :
Number of deleted records

Errors :
Number of errors

Conflicts :
Number of conflicts

StartTick :
Tick when synchronization started

See also
TReplTargetDatabase (p.57).SynchronizeTable (p.58)

TSyncAction
type
 TSyncAction = record
 Action: Byte;
 Where_Src: string;
 Where_Tgt: string;
 end {TSyncAction};

Structure identifying synchronization action
Action :
See also: saUpd (p.99) saInsDel (p.100) saSrcTgt (p.100) saRO (p.100)

See also
TReplTargetDatabase (p.57).SynchronizeTable (p.58)

TSyncCondition
type
 TSyncCondition = record
 Alias: string;
 Where: string;
 end {TSyncCondition};

TSyncActions
type
 TSyncActions = record
 Acts: array of TSyncAction (p.97) ;
 Cond: array of TSyncCondition (p.97) ;
 end {TSyncActions};

Open array list of actions

Interbase Replication Suite Guide

 - 98 -

TSyncRecord
type
 TSyncRecord = record
 SchemaId: Integer;
 GroupId: Integer;
 SrcDBId: Integer;
 TgtDBId: Integer;
 RelationId: Integer;
 TgtDBName: string;
 RelationName: string;
 Tag: Integer;
 Action: TSyncAction (p.97) ;
 end {TSyncRecord};

Structure passing config database parameters to TReplTargetDatabase (p.57).SynchronizeTable (p.58)
Tag:

Internal use only
Action :

Action description

TReplFieldItem
type
 TReplFieldItem = record
 FieldName_Src: string;
 FieldName_Tgt: string;
 FieldId: Integer;
 Updatable_Tgt: Boolean;
 Options: Integer;
 Idx: Integer;
 Tag: Integer;
 end {TReplFieldItem};

Structure caching config database parameters
Tag:

Internal use only

See also
TReplFieldDefs (p.52)

TReplFieldRef
type
 TReplFieldRef = record
 FieldType: Byte;
 Idx: Integer;
 end {TReplFieldRef};

See also
TReplFieldDefs (p.52)

Interbase Replication Suite Guide

 - 99 -

PReplOffRecordBuffer
type
 PReplOffRecordBuffer = ^TReplOffRecordBuffer;

TReplOffRecordBuffer
type
 TReplOffRecordBuffer = record
 Buffer: TMemoryStream;
 UTF8: Boolean;
 Pos: array of Integer;
 end {TReplOffRecordBuffer};

Internal structure to store offline record values

See also
TReplLogRecord_Offline (p.62)

TIBObjectType
type
 TIBObjectType =
 (ibobjRelation
 , ibobjProcedure
 , ibobjTrigger
 , ibobjFunction
 , ibobjGenerator
 , ibobjRole
);

Used in TIBReplicator (p.62).CreateObject, TIBReplicator (p.62).DropObject and TIBReplicator

(p.62).ObjectExists functions
ibobjRelation :

Identifies a relation (table)
ibobjProcedure :

Identifies a stored procedure
ibobjTrigger :

Identifies a trigger
ibobjFunction :

Identifies an external function
ibobjGenerator :

Identifies a generator
ibobjRole :

Identifies a role

saUpd
const
 saUpd = '01';

Bit mask, update during synchronization enabled

Interbase Replication Suite Guide

 - 100 -

See also
TSyncAction (p.97)

saInsDel
const
 saInsDel = '02';

Bit mask, insert/delete during synchronization enabled

See also
TSyncAction (p.97)

saSrcTgt
const
 saSrcTgt = '04';

Bit mask, loop target relation
if bit = 0 then loop in source database and find target record (can insert new records) if bit = 0
then loop in target database and find source record (can delete non-existing records)

See also
TSyncAction (p.97)

saRO
const
 saRO = '08';

Bit mask, don't update target database but create differential log

See also
TSyncAction (p.97)

dbtInterbase
const
 dbtInterbase = 0;

equivalent of DATABASES.DBTYPE, instructs that database is Interbase

See also
TIBReplicator (p.62).GetDatabaseType (p.68)

dbtLog
const
 dbtLog = 1;

equivalent of DATABASES.DBTYPE, instructs that database text file

Interbase Replication Suite Guide

 - 101 -

See also
TIBReplicator (p.62).GetDatabaseType (p.68)

optIsRelRecord
const
 optIsRelRecord = '01';

Bit mask, instructs that TOffSrcReplLog (p.91) contains relation record

optIsForeignRecord
const
 optIsForeignRecord = '02';

Bit mask, instructs that TOffSrcReplLog (p.91) contains foreign record

optUTF8
const
 optUTF8 = '04';

Bit mask, instructs that TOffSrcReplLog (p.91) strings are encoded as UTF8, alternatively are
encoded in Unicode

ackflManual
const
 ackflManual = '01';

Bit mask of TOffTgtReplAckRec.Flag
- 0 .. delete record from REPL$LOG
- 1 .. move record to REPL$MAN

See also
TOffTgtReplAckRec

ackflReasonStr
const
 ackflReasonStr = '02';

Bit mask applied to TOffTgtReplAckRec (p.93).Flag, instructs that structure contains reason of
replication error

ackflConflict
const
 ackflConflict = '04';

Interbase Replication Suite Guide

 - 102 -

Bit mask applied to TOffTgtReplAckRec (p.93).Flag, instructs that structure contains conflict
description

offrtRelationDef
const
 offrtRelationDef = 1;

See also
TOffSrcRelDef (p.91)

offrtReplLog
const
 offrtReplLog = 2;

See also
TOffSrcReplLog (p.91)

offrtReplAck
const
 offrtReplAck = 3;

See also
TOffTgtReplAck (p.94)

offrrtReplAckAck
const
 offrrtReplAckAck = 4;

See also
TOffSrcReplAckAck (p.95)

offrrtReplAckAckAck
const
 offrrtReplAckAckAck = 5;

See also
TOffSrcReplAckAck (p.95)

Interbase Replication Suite Guide

 - 103 -

offrReplResend
const
 offrReplResend = 6;

See also
TOffReplResend (p.95)

schtReplication
const
 schtReplication = 0;

equivalent of SCHEMA.DBTYPE, instructs that schema defines a replication

See also
TIBReplicator (p.62).GetSchemaType (p.68)

schtRecordHistory
const
 schtRecordHistory = 1;

equivalent of SCHEMA.DBTYPE, instructs that schema defines a record history logging

See also
TIBReplicator (p.62).GetSchemaType (p.68)

repoptReplicateLog
const
 repoptReplicateLog = '01';

Bit mask, do not replicate records but move REPL$LOG from source to target database

See also
TReplTargetDatabase (p.57).ReplicateRecord (p.58)

repoptReportToSource
const
 repoptReportToSource = '02';

Bit mask, report problem to source database REPL$MAN

See also
TReplTargetDatabase (p.57).ReplicateRecord (p.58)

Interbase Replication Suite Guide

 - 104 -

repoptReportToTarget
const
 repoptReportToTarget = '04';

Bit mask, report problems to target REPL$MAN

See also
TReplTargetDatabase (p.57).ReplicateRecord (p.58)

repoptExtConflictCheck
const
 repoptExtConflictCheck = '08';

Bit mask, enable extended conflict checking

See also
TReplTargetDatabase (p.57).ReplicateRecord (p.58)

repoptTargetReplication
const
 repoptTargetReplication = '10';

Bit mask, replicate from target database REPL$LOG to target database

See also
TReplTargetDatabase (p.57).ReplicateRecord (p.58)

confoptPrimaryKeyViolation
const
 confoptPrimaryKeyViolation = 1;

Replicator cannon find equivalent record in target database when updating or deleting, or target
record already exists when inserting

See also
TOffTgtReplAckConflictRec (p.93) repoptExtConflictCheck (p.104) fldoptLogConflict (p.106)

confoptRecordViolation
const
 confoptRecordViolation = 2;

A field conflict of fields marked fldoptDoNotUpdateRecordWhenConflict (p.106) preventing record
modification

See also
TOffTgtReplAckConflictRec (p.93) repoptExtConflictCheck (p.104) fldoptTargetPriorityConflict (p.105)
fldoptLogConflict (p.106) fldoptDoNotUpdateRecordWhenConflict (p.106)

Interbase Replication Suite Guide

 - 105 -

confoptFieldViolation
const
 confoptFieldViolation = 3;

A field has not been updated due field conflict. Non conflicting fields in record are updated.

See also
TOffTgtReplAckConflictRec (p.93) repoptExtConflictCheck (p.104) fldoptTargetPriorityConflict (p.105)
fldoptLogConflict (p.106) fldoptDoNotUpdateRecordWhenConflict (p.106)

reloptWipeLogOnDelete
const
 reloptWipeLogOnDelete = '01';

Bit mask, instructs replicator to delete are non processed REPL$LOG records when record is
deleted in source database. It prevents replication of records that are inserted/modified and
then deleted before changes are replicated to targets. Equivalent of RELATIONS.OPTIONS.

fldoptDoNotInsert
const
 fldoptDoNotInsert = '01';

Bit mask, instructs never insert such fields when inserting.
Equivalent of FIELDS.OPTIONS .

fldoptDoNotUpdate
const
 fldoptDoNotUpdate = '02';

Bit mask, instructs never update such fields when updating.
Equivalent of FIELDS.OPTIONS .

fldoptUpdateOnlyWhenChanged
const
 fldoptUpdateOnlyWhenChanged = '04';

Bit mask, instructs allow update such fields only when was changed in source database. Note
that repoptExtConflictCheck (p.104) must be enabled.
Equivalent of FIELDS.OPTIONS .

fldoptTargetPriorityConflict
const
 fldoptTargetPriorityConflict = '08';

Bit mask, instructs leave field value unchanged when field conflict occurs. Note that
repoptExtConflictCheck (p.104) must be enabled.

Interbase Replication Suite Guide

 - 106 -

Equivalent of FIELDS.OPTIONS .

fldoptLogConflict
const
 fldoptLogConflict = '10';

Bit mask, instructs log conflict to REPL$MAN
Equivalent of FIELDS.OPTIONS .

fldoptDoNotUpdateRecordWhenConflict
const
 fldoptDoNotUpdateRecordWhenConflict = '20';

Bit mask, prevents record modification if particular field conflict occurs. Note that
repoptExtConflictCheck (p.104) must be enabled.
Equivalent of FIELDS.OPTIONS .

fldoptDoNotDeleteRecordWhenConflict
const
 fldoptDoNotDeleteRecordWhenConflict = '100';

Bit mask, prevents record delete if particular field conflict occurs. Note that
repoptExtConflictCheck (p.104) must be enabled.
Equivalent of FIELDS.OPTIONS .

tranRO
const
 tranRO = 'read'#13#10'read_committed';

default read only transaction parameters

tranRW
const
 tranRW = 'write'#13#10'read_committed'#13#10'rec_ version'#13#10'wait';

default read/write transaction parameters

