

Boomerang Library Guide

Editor:
Tomáš Mandys, tomas.mandys@2p.cz (2p plus)

Home site:

http://www.2p.cz

Boomerang Library Guide

 - 2 -

Product overview
BOOMERANG is the component library for GSM communication software development. The
components are primary written for Delphi 5, but they are usable also for Delphi 4,6,7 and Kylix
3 and finally for Delphi 8 for .NET Framework.
Some components are available as ActiveX objects usable by any ActiveX capable application
(Visual Basic, Visual C#, Visual Basic for Applications, Delphi etc.).

Features

- (serial) port components
- modem components (client dial-up communication)
- socket components (TCP/IP client side)
- TAPI components (TAPI 2.0 - Win98, WinNT)
- GSM modem components
- BMG components (Business Message Gateway), Nokia CIMD protocol(Computer Interface

to Message Distribution)
- BMG client
- EMI components (ERMES UCP, T-Online SMS Direct, Oskar OSKO)
- EMI client
- terminal component
- narrow band socket (NBS) protocol, UDH (user data header) protocol
- OTA (over-the-air) services
- Smart messages (CLI, logos, picture messages, ringing tones, business cards, calendar)
- EMS (pictures, animations, sounds, etc.)
- OCX libraries for SMS and EMI communication
- Wap Push messages
- WAP WBXML support
The components are multi-threaded. It means, that communication components can work
asynchronously (non-modally).

Boomerang Library Guide

 - 3 -

History
Here is brief history of development progress.

July 2004 (v 5.2)

• WBXML support
• Wap-push messages

April 2004

• fixed bug in AT+CNMI for Siemens S55, ...
• tested Bluetooth and IrDA
• tested Nokia 6600

December 2003

• EMIClient and GSM as ActiveX library
• new demo application
• changed license model

November 2003

• added Wavecom Fasttrack support (and Fargo Maestro)
• TGSM.CommandEcho property
• fixed bugs in TSiemensOTA
• fixed bug in Wavecom initialization (wait for +WIND)

October 2003

• import/export of Smart Message ringing tone to RTTTL

September 2003

• extended EMI component (common keep-alive)
• new events RxCommandBeforeAcknowledge for TEMIClient and TBMGClient

August 2003

• Nokia 6650 supported

July 2003 (v. 4.0)

• SMS protocol support (NBS, UDHI, Siemens)
• Smart messages
• EMS messages
• added support for accessing UD in UNICODE (widestring)

Boomerang Library Guide

 - 4 -

July 2003

• fixed some bugs (ocassionally striped characters in PDU)

April 2003 (v. 3.0)

• ported to Kylix
• rewritten UnsolicitedIndication
• get ManufacturerInfo support
• new SMS type support (SMS-STATUS-REPORT, ...)
• cell broadcast support
• help (.hlp) file

June 2002

• fixed bug in TTerminal,TSocketConnection thread initialization (in D6)

February 2002

• bugs in timing of TGSM destroying fixed
• rewritten (accelerated) visual TTerminal

January 2002

• basic distribution discontinued, all of them is in lite one

December 2001

• new component TModem for dial-up communication and connection

November 2001

• fixed bug in Windows NT/2000 when object being destroyed (added WaitFor thread
destroyed)

• fixed mistake in TGSM,TBMGClient,TEMIClient if main thread was not also VCL thread

September 2001

• Siemens TC35 supported

august 2001

• new component TSocketConnection for TCP/IP communication

July 2001

• WaveCom supported
• Nokia 6210 supported
• Siemens M35, Motorola T260 supported
• special kind of phone number, alias support implemented (for ex. 4616)

Boomerang Library Guide

 - 5 -

July 2000

• Nokia 9110 and SMS text format supported

Boomerang Library Guide

 - 6 -

Boomerang applications
There is includes several application founded on library.
• EMI CLIENT (p.6)
• BMG CLIENT (p.7)
• Demos (p.9)

EMI CLIENT
Is a sample fully functional application that demonstrates all the TEMIClient (p.21) functions. Since
it is an automation server its function can be used by other application through COM/DCOM
technology.
There are enabled two methods of keep-alive. First method uses command 31 (SMT->SMSC)
and second one uses specific bidirectional messaging - commands 51 (SMT->SMSC) and 52
(SMSC->SMT) with configurable specification.
Before using a automation server is necessary to register it executing EMI client program with
the /regserver parameter, unregistering then with the /unregserver parameter.
Received messages are passed to client using events.

Command line
/I:<file_name> overrides default ini file, default one is <program_path>/EMI.INI

Ini file
Most of parameters is written by EMI client except section [EMI.Connection] where are defined
operator specific parameters. See TEMIClient.Params (p.21) description. One exception is that
Password is scrambled.

OLE interface
property Active: WordBool; (read/write)

State of connection, set to True to connect to EMI server or False to disconnect from them.
When an OLE client is connected EMIClient session is opened. There is not necessary to write
to Active property unless you need implement special behaviour.

property PhoneNumber: WideString; (read only)

Assigned phone number to EMI service (probably short alias, 4 digits)

procedure Submit(const DA: WideString; const Msg: W ideString;
 Binary: WordBool; MCLs: Smallint; PID: Smallint;
 NT: Smallint; RPI: Smallint; VP: T DateTime;
 out SCTS: TDateTime);

Submits message, returns time stamp (SCTS) assigned to message in SMS center. See EMI
protocol datasheet

Boomerang Library Guide

 - 7 -

function TestConnection: WordBool;

Tests connection and returns True if is still active (EMI server drops connection after defined
interval of inactivity)

Events
property OnActiveChanged: TNotifyEvent;

Fired when is changed state of connection (Active property)

property OnDelivered: TAutoEMIOnDelivered;
TAutoEMIOnDelivered = procedure(Sender: TObject; SC TS: TDateTime; var OA: OleVariant;
 va r DA: OleVariant;var Msg: OleVariant;
 Binary: Wo rdBool; MCLs: Smallint; PID: Smallint;
 RP I: Smallint; VP: TDateTime) of object;

Fired when is delivered a message. See EMI protocol datasheet

property OnDel iveredNotification: TAutoEMIOnDeliveredNotification read FOnDeliveredNotification write FOnDeliveredNo tification;
TAutoEMIOnDeliveredNotification = procedure(Sender: TObject; SCTS: TDateTime; var OA: OleVariant;
 var DA: OleVariant;
 var Msg : OleVariant;PID: Smallint;
 Deliver yStatus: Smallint;
 ReasonC ode: Smallint;
 DSCTS: TDateTime) of object;

Fired when is delivered a message delivery notification. See EMI protocol datasheets.

See also
BMG CLIENT (p.7) GDEP CLIENT (p.8)

BMG CLIENT
Is a sample fully functional application that demonstrates all the TBMGClient (p.12) functions.
Since it is an automation server its function can be used by other application through
COM/DCOM technology. Underlying protocol is TCP/IP protocol or dial-up connection using
modem AT commands or a TAPI interface.
Before using a automation server is necessary to register it executing BMG client program with
the /regserver parameter, unregistering then with the /unregserver parameter.
Received messages are passed to client using events or are polled by OLE client.

Command line
/I:<file_name> overrides default ini file, default one is <program_path>/BMG.INI
/TAPI use TAPI instead modem connection

OLE interface
property Active: WordBool; (read only)

State of connection, True if connected to BMG Center.

property RetrieveAut: WordBool; (read only)

Boomerang Library Guide

 - 8 -

True if is enabled RetrieveAut.

procedure NewProfile(const Profile1: WideString; co nst Number: WideString);
procedure GetProfiles(out aValue: WideString);
procedure CopyProfile(const Profile1: WideString; c onst Profile2: WideString);
procedure AppendProfile(const Profile1: WideString; const Profile2: WideString);
procedure DeleteProfile(const Profile1: WideString) ;
procedure TestUser(const Profile1: WideString; cons t Number: WideString; out aValue: WordBool);
procedure NewUser(const Profile1: WideString; const Number: WideString);
procedure GetUsers(const Profile1: WideString; out aValue: WideString);
procedure DeleteUser(const Profile1: WideString; co nst Number: WideString);
procedure CountUser(const Profile1: WideString; out aValue: Integer);
procedure Submit(const Number: WideString; const Ms g: WideString; VP: Byte; PID: Byte; DCS: Byte; Aux: SYSINT; Spc: Byte);
procedure Retrieve(out aValue: WideString);
procedure RetrieveAll(out aValue: WideString);
procedure SubmitProfile(const Profile1: WideString; const Msg: WideString; VP: Byte; PID:
procedure Count(out aValue: Integer);
procedure DeleteAll;
procedure SubmitBin(const N umber: WideString; const Msg: WideString; VP: Byte; PID: Byte; DCS: Byte; Aux: SYSINT; Spc: Byte);
procedure SubmitProfileBin(const Profile1: WideStri ng; const Msg: WideString; VP: Byte; PI

See documentation of BMG protocol

Events
property OnActiveChanged: TNotifyEvent;

Fired when is changed state of connection (Active property)

property OnRetrievedAut: TAutoBMGOnRetrievedAut rea d FOnRetrievedAut write FOnRetrievedAut;
TAutoBMGOnRetrievedAut = procedure(Sender: TObject; var aValue: OleVariant) of object;

Fired when is delivered a message (if RetrieveAut = True).

See also
EMI CLIENT (p.6) GDEP CLIENT (p.8)

GDEP CLIENT
Is a sample fully functional application that demonstrates all the TGDEPClient (p.31) functions.
Underlying protocol is HTTP over VPN or public internet (SSL secured).

Command line
/I:<file_name> overrides default ini file, default one is <program_path>/GDEPCLIENT.INI

See also
EMI CLIENT (p.6) BMG CLIENT (p.7)

Boomerang Library Guide

 - 9 -

Demo applications

Example_COM
The project demonstrates using of the serial communication component - sending, receiving,
terminal. Example is availbable for Win32, .NET and Linux.

Example_TAPI
The project demonstrates using of the TAPI components - sending, receiving, terminal,
automatic dialup, direct connection, configuration settings.

Example_GSM
The project demonstrates using of the GSM modem components - GSM network login, sending
and receiving of SMS messages, signal level, manual modem controlling by AT commands. It
also demonstrates sending Smart messages and EMS (logos, melodies, animations, etc.).
Example is availbable for Win32, .NET, ActiveX and Linux.
Note in the gsm.ini configuration file must be set the modem type, the PIN and the SMS center
number. The INI is searched in the same directory as the program. The INI file can be changed
using /I:<my ini>.

Boomerang Library Guide

 - 10 -

Registration
Registration is required for each computer where Boomerang library (p.1) is running. The for free
registration/activation is valid only for one machine where developer tool is running. If you need
deploy your software, you must buy deployment key.
You can register using online registration form (http://www.2p.cz/en/bumerang/registrace.html). You'll receive
activation key immediately to your mailbox.

Boomerang Library Guide

 - 11 -

Unit BMG
BMG (Business Message Gateway) is an industrial communication interface used by the
Eurotel Czech and Slovakia GSM operator for mass SMS message sending and receiving.
BMG protocol is based on Nokia CIMD/BIP protocol (Computer Interface to Message
Distribution). The client is connected to the BMG via a dialup or a leased line. The components
use connecting through the standard TAPI. Receiving of incoming messages can be both
asynchronous (unsolicited) and synchronous (solicited). The BMG specification is available in
Eurotel. The components are tested on BMG v1.17 server release.

TBMG
type
 TBMG = class(TLogConnection);

Base class encapsulating BMG functionality

Params (TBMG)

published
 property Params: TStrings read write;

Parameters necessary for connecting (login name, password, etc.), see BMG documentation.

ComDevice (TBMG)

published
 property ComDevice: TCommunicationConnection read write;

The device that is used for connecting to the BMG (for ex. TModem (p.16), TClientSocketConnection

(p.53), TLineCom (p.56))

RepeatCount (TBMG)

published
 property RepeatCount: Integer read write
 default 5;

Number of attempts to send command.

Version (TBMG)

public
 property Version: Word read;

The BMG server version.

OnRxChar (TBMG)

published
 property OnRxChar: TRxCharEvent (p. Chyba! Záložka není definována.) read write;

Is called in the VCL thread when a char was received.

Boomerang Library Guide

 - 12 -

OnRxCommand (TBMG)

published
 property OnRxCommand: TRxCommandEvent (p. Chyba! Záložka není definována.) read write;

Is called in the VCL thread when a command was received. See also
OnRxCommandBeforeAcknowledge (p.12)

OnRxCommandBeforeAcknowledge (TBMG)

published
 property OnRxCommandBeforeAcknowledge: TRxCommand BeforeAcknowledgeEvent (p. Chyba! Zálož ka není definována.

Is called in the COM thread when a command was received. aProcessed - if True command is
expected that has been processed and does not appear in OnRxCommand (p.12) event.

LastNakCmd (TBMG)

public
 LastNakCmd: Byte;

The last command returned in NAK.

LastNakError (TBMG)

public
 LastNakError: Word;

The last error returned in NAK.

TBMGClient
type
 TBMGClient = class(TBMG (p.11));

The object solves the client connection to the BMG server and using its functions.

Boomerang Library Guide

 - 13 -

Unit CommConnect
Unit defines classes enabling connecting to a hardware device (serial port, modem, etc.)

TCommHandle
type
 TCommHandle = class(TCommunicationConnection);

Object uses hCommDev (p.14) handle and implements all necessary functions for accessing of ports
and devices opened using any function returning the handle (for ex. Windows.FileOpen or
libc.open). There are supported both synchronous and asynchronous operations (multi-
threaded). Many parameters can be set (baud rate, number of stop bits, parity, timeouts,
events, etc.).

Baudrate (TCommHandle)

published
 property Baudrate: TBaudrate (p.19) read write
 default br9600;

Baud rate to be used.

Parity (TCommHandle)

published
 property Parity: TParity (p.19) read write
 default paNone;

Parity checking to be used.

Stopbits (TCommHandle)

published
 property Stopbits: TStopbits (p.19) read write
 default sb10;

Number of stop bits

Databits (TCommHandle)

published
 property Databits: TDatabits (p.20) read write
 default da8;

Number of databits

Options (TCommHandle)

published
 property Options: TCommOptions (p. Chyba! Záložka není definována.) read write;

Event options

Boomerang Library Guide

 - 14 -

DontSynchronize (TCommHandle)

published
 property DontSynchronize;

If the value is True all object the events are called in TCommEventThread , if the value is False the
events re called by means of the TThread.Synchronize method in the VCL thread. The VCL thread
can use visual components.

hCommDev (TCommHandle)

public
 property hCommDev: THandle read write;

Assigned device handle.

ComError2 (TCommHandle)

public
 procedure ComError2(const aFunc: string);

Raises EComError (p.18)

OutQueCount (TCommHandle)

public
 function OutQueCount{}: Integer;

Number of chars in output queue

Lock (TCommHandle)

public
 procedure Lock;

Starts critical section. Other thread cannot interrupt this section

See also
Unlock (p.14)

Unlock (TCommHandle)

public
 procedure Unlock;

Terminates the critical section.

See also
Lock (p.14)

OnBreak (TCommHandle)

published
 property OnBreak: TNotifyEvent read write;

Event called from the HandleCommEvent when condition detected.

See also
DontSynchronize (p.14) TCommEventType

Boomerang Library Guide

 - 15 -

OnCts (TCommHandle)

published
 property OnCts: TNotifyEvent read write;

Event called from the HandleCommEvent when condition detected.

See also
DontSynchronize (p.14) TCommEventType

OnDsr (TCommHandle)

published
 property OnDsr: TNotifyEvent read write;

Event called from the HandleCommEvent when condition detected.

See also
DontSynchronize (p.14) TCommEventType

OnRing (TCommHandle)

published
 property OnRing: TNotifyEvent read write;

Event called from the HandleCommEvent when condition detected.

See also
DontSynchronize (p.14) TCommEventType

OnRlsd (TCommHandle)

published
 property OnRlsd: TNotifyEvent read write;

Event called from the HandleCommEvent when condition detected.

See also
DontSynchronize (p.14) TCommEventType

OnError (TCommHandle)

published
 property OnError: TCommErrorEvent (p. Chyba! Záložka není definována.) read write;

Event called from the HandleCommEvent when condition detected.

See also
DontSynchronize (p.14) TCommEventType

OnRxChar (TCommHandle)

published
 property OnRxChar;

Event called from the HandleCommEvent when a char received and is in input queue.

See also
DontSynchronize (p.14) TCommEventType Retrieve InQueCount

Boomerang Library Guide

 - 16 -

OnRxFlag (TCommHandle)

published
 property OnRxFlag: TNotifyEvent read write;

Event called from the HandleCommEvent when condition detected.

See also
DontSynchronize (p.14) TCommEventType

OnTxEmpty (TCommHandle)

published
 property OnTxEmpty: TNotifyEvent read write;

Event called from the HandleCommEvent when last char from output queue has been sent

See also
DontSynchronize (p.14) TCommEventType Send OutQueCount (p.14)

TComm
type
 TComm = class(TCommHandle (p.13));

Object implements the device opening and closing by means of WIN32 API Windows.OpenFile
function or Linux libc.open .

DeviceName (TComm)

published
 property DeviceName: string read write;

Name of device for the Windows.OpenFile API function or libc.open in Linux

TModem
type
 TModem = class(TComm (p.16));

Object for dial-up connection to dial-up host server. In OpenConn method is dialed PhoneNumber (p.18)
and is waiting for modem CONNECT response. After that is set Active to True .

cInit (TModem)

published
 property cInit: TString read write;

Initialization string sent to modem during initialization, default ATZ.

DelayBeforeInit (TModem)

published
 property DelayBeforeInit: Integer read write;

Delay in ms before initializing.

Boomerang Library Guide

 - 17 -

DelayAfterInit (TModem)

published
 property DelayAfterInit: Integer read write;

Delay in ms after initializing.

ResponseTimeout (TModem)

published
 property ResponseTimeout: Integer read write;

Timeout in ms in that modem must response to command

ConnectTimeout (TModem)

published
 property ConnectTimeout: Integer read write;

Timeout in ms in that modem must make success connection (rConnect (p.17) string is expected).

rInit (TModem)

published
 property rInit: TString read write;

Response to initialization command, default OK.

cDial (TModem)

published
 property cDial: TString read write;

Initialization string sent to modem when dialing, default ATM1L1X3DT (speaker on when dialing, no
dial tone, tone dialing), PhoneNumber (p.18) follows.

rConnect (TModem)

published
 property rConnect: TString read write;

Response when successfully connected, default CONNECT (connection is done when received
string CONNECT, CONNECT 9600, CONNECT MNP10, etc.)

rBusy (TModem)

published
 property rBusy: TString read write;

Response if line is busy, default BUSY.

rNoCarrier (TModem)

published
 property rNoCarrier: TString read write;

No carrier response, default NO CARRIER.

rNoDialtone (TModem)

published
 property rNoDialtone: TString read write;

No dial tone response, default NO DIALTONE. See also cDial (p.17) and ATX3 command.

Boomerang Library Guide

 - 18 -

cHangUp (TModem)

published
 property cHangUp: TString read write;

Hangup command, default +++ATH.

rHangUp (TModem)

published
 property rHangUp: TString read write;

Hangup response, default OK.

PhoneNumber (TModem)

published
 property PhoneNumber: TString read write;

Phone number to be dialed. Number is attached to cDial (p.17). Comma means pause in dialing,
for ex. 0,02123456 .

IsMakingCall (TModem)

public
 property IsMakingCall: Boolean read;

If True modem is just making connection (dialing).

Drop (TModem)

public
 procedure Drop;

Drops connection, if dialing drops it (in this moment Active is False)

OnRxCommand (TModem)

published
 property OnRxCommand: TModemRxCommandEvent (p. Chyba! Záložka není definována.) read write;

Event is called when modem is in command mode (when Active is False). When connection is
active, OnRxChar (p.15) event is called. Event is processed in COM thread.

EComError
type
 EComError = class(EConnectError);

Exception raised when communication error occurs

Boomerang Library Guide

 - 19 -

TBaudrate
type
 TBaudrate =
 (br110
 , br300
 , br600
 , br1200
 , br2400
 , br4800
 , br9600
 , br14400
 , br19200
 , br38400
 , br56000
 , br57600
 , br115200
 , br128000
 , br256000
);

Enumerates possible baud rates. Note that primary rates are Microsoft Windows rates hence
not all Linux (termios) rates are supported.

TParity
type
 TParity =
 (paNone
 , paOdd
 , paEven
 , paMark
 , paSpace
);

Enumaretes possible parity options. Note that primary is Microsoft Windows OS hence not all
options are supported in Linux (termios).

TStopbits
type
 TStopbits =
 (sb10
 , sb15
 , sb20
);

Enumerates possible stop bit options. Note that primary is Microsoft Windows OS hence not all
options are supported in Linux (termios).

Boomerang Library Guide

 - 20 -

TDatabits
type
 TDatabits =
 (da4
 , da5
 , da6
 , da7
 , da8
);

Enumerates possible data bit options. Note that primary is Microsoft Windows OS hence not all
options are supported in Linux (termios).

TFlowControl
type
 TFlowControl =
 (fcNone
 , fcCTS
 , fcDTR
 , fcSoftware
 , fcDefault
);

Enumerates possible flow control options. Note that primary is Microsoft Windows OS hence not
all options are supported in Linux (termios).

Boomerang Library Guide

 - 21 -

Unit EMI
The SMSC External Machine Interface (EMI) is based on an extended subset of the UCP
protocol defined for the ERMES paging system in ETS 300 133 3. When referring to 'UCP' in
the context of the SMSC, almost always the EMI, the extended subset of the ERMES UCP, is
meant.
In order to provide access to the more extensive set of SMS commands, it was necessary to
extend the UCP definition with some additional, SMSC specific commands, such as 'SMS
message transfer operation' and 'SMT alert operation'
There is implemented support of command operations 31, 51, 52, 53, 60. Underlying protocol is
TCP/IP protocol and X.25.
EMI connection was tested for T-Online and Oskar operators.

TEMIClient
type
 TEMIClient = class(TLogConnection);

Object for client connection to SMS center (SMSC).

Params (TEMIClient)

published
 property Params: TStrings read write;

Parameters necessary for connecting, see EMI documentation and SMSC configuration

User=<user account>
Short number identifying account. If the parameter value is empty is expected anonymous login.
Only keep-alive test is done to test connection on login.

Password=<password>
Account password

SMSC_ADC=<AdC>
Default: User
Address (phone number) assigned to service (OA/DA number)

SMT_KEEPALIVE_INTERVAL=<sec>
Default: 300 sec
In this interval is periodically tested connection to SMSC. Client (SMT) sends keep-alive
messages, see SMT_KEEPALIVE_CMD

SMT_KEEPALIVE_CMD=<cmd>
Default: 31
Client's (SMT) keep-alive operation (SMT->SMSC).
31 use Alert operation (for ex. T-Mobile)
51 use Submit Short Message operation (for ex. Oskar)

Boomerang Library Guide

 - 22 -

SMT_KEEPALIVE_DA=<number>
Destination number/address of keep-alive SM. It has meaning only if SMT_KEEPALIVE_CMD
is 51

SMT_KEEPALIVE_OA=<number>
Originated number/address of keep-alive SM. It has meaning only if SMT_KEEPALIVE_CMD is
51

SMT_KEEPALIVE_TEXT=<text>
Text of keep-alive SM. It has meaning only if SMT_KEEPALIVE_CMD is 51

SMSC_KEEPALIVE_CMD=<cmd>
Default: -1
Server's (SMSC) keep-alive operation (SMSC->SMT).
52 listen specific Delivery Short Message operation (for ex. Oskar)

SMSC_KEEPALIVE_OA=<number>
Originated number/address of keep-alive SM. It has meaning only if SMSC_KEEPALIVE_CMD
is 52

SMSC_KEEPALIVE_DA=<number>
Destination number/address of keep-alive SM. It has meaning only if SMSC_KEEPALIVE_CMD
is 52

SMSC_KEEPALIVE_TEXT=<text>
Text of keep-alive SM. It has meaning only if SMSC_KEEPALIVE_CMD is 52

SMT_INT_PREFIX=<prefix>
International sign (plus, +) will be replaced by this prefix.
For example if parameter is 00, number +420602123456 will be changed to 00420602123456 . If
parameter is empty sign plus is removed. Depends on EMI implementation.

ComDevice (TEMIClient)

published
 property ComDevice: TCommunicationConnection read write;

The device that is used for connecting to the EMI (for ex. TClientSocketConnection (p.53))

RepeatCount (TEMIClient)

published
 property RepeatCount: Integer read write
 default 5;

Number of attempts to send command.

See also
RepeatTimeout

Boomerang Library Guide

 - 23 -

RecTimeout (TEMIClient)

published
 property RecTimeout: LongInt read write
 default 3000;

When a command is send, TEMIClient is waiting for response max. RecTimeout.

ETXTimeout (TEMIClient)

published
 property ETXTimeout: LongInt read write
 default 1000;

Auxiliary timeout used in SendCommand and some command is received (waiting for ETX).

RepeatTimeout (TEMIClient)

published
 property RepeatTimeout: LongInt read write
 default 500;

Timeout used when command is repeated

See also
RepeatCount (p.22)

IsBusy (TEMIClient)

public
 property IsBusy: Boolean read;

Check if component is currently busy

See also
Busy (p.23), Unbusy (p.24)

PhoneNumber (TEMIClient)

public
 property PhoneNumber: string read;

Client phone number / alias, for ex. 5071). It's value of the SMSC_ADC Params (p.21).

CommandBufferCount (TEMIClient)

public
 property CommandBufferCount: Integer read;

Number of received commands in buffer

Busy (TEMIClient)

public
 procedure Busy;

Lock component's busy flag

See also
Unbusy (p.24), IsBusy (p.23)

Boomerang Library Guide

 - 24 -

Unbusy (TEMIClient)

public
 procedure Unbusy;

Unlock component's busy flag

See also
Busy (p.23), IsBusy (p.23)

smTestConnection (TEMIClient)

public
 function smTestConnection{}: Boolean;

Returns conection status, see. LastSendTick (p.25).

smSubmit (TEMIClient)

public
 function smSubmit(
 const aPhn: string;
 const aOAPhn: string;
 const Msg: string;
 aBinary: Boolean;
 aMCLs: Byte;
 aPID: Byte;
 aNT: Byte;
 aRPI: Byte;
 Validity: TDateTime): TDateTime;

Sends SMS Msg to aPhn. Next parameters see. EMI specification. Returns SCTS time stamp,
that was assigned to message in SMS center. There is possible to require message delivery
notification using aNT parameter. Notification is delivered as special message. For aMCLs use
mclxxxx constants.
aPhn:

Target phone number
aOAPhn:

Originator phone number, if empty default PhoneNumber (p.23) is used
Msg:

Message
aNT:

see ntXXX constants

OnBusyChanged (TEMIClient)

published
 property OnBusyChanged: TBusyChanged (p. Chyba! Záložka není definována.) read write;

Notification when busy flag is changed

See also
Busy (p.23), Unbusy (p.24), IsBusy (p.23)

OnRxChar (TEMIClient)

published
 property OnRxChar: TRxCharEvent (p. Chyba! Záložka není definována.) read write;

Boomerang Library Guide

 - 25 -

Is called in the VCL thread when a char was received.

OnRxCommand (TEMIClient)

published
 property OnRxCommand: TRxCommandEvent (p. Chyba! Záložka není definována.) read write;

Is called in the VCL thread when a command was received. Params aOT-command number
(cmdsDelivery or cmdsDeliveryNotification), aTRN - transaction number (now always 0), aResult -
response / query, aData. See also OnRxCommandBeforeAcknowledge (p.25). Using GetDeliverySMItem or
GetDeliveryNotificationItem functions is possible decode SMS content.

OnRxCommandBeforeAcknowledge (TEMIClient)

published
 property OnRxCommandBeforeAcknowledge: TRxCommand BeforeAcknowledgeEvent (p. Chyba! Záložka není definována.

Is called in the COM thread when a command was received. Params aOT-command number
(cmdsDelivery or cmdsDeliveryNotification), aTRN - transaction number (now always 0), aResult -
response / query, aData, aProcessed - if True command is expected that has been processed
and does not appear in OnRxCommand (p.25) event. Using GetDeliverySMItem or
GetDeliveryNotificationItem functions is possible decode SMS content.

LastNakCmd (TEMIClient)

public
 LastNakCmd: Byte;

The last command returned in NAK.

LastNakError (TEMIClient)

public
 LastNakError: Integer;

The last error returned in NAK.

LastSendTick (TEMIClient)

public
 LastSendTick: DWord;

Windows GetTickCount value when was received last char. EMI server disconnects when no char
received from client in EMIDisconnectTimeout . Client can periodically test connection using
smTestConnection (p.24) not to disconnect socket.

mclDisplay
const
 mclDisplay = 0;

Message class 0

mclME
const
 mclME = 1;

Boomerang Library Guide

 - 26 -

Message class 1 (memory equipment)

mclSIM
const
 mclSIM = 2;

Message class 2 (store in SIM)

mclTE
const
 mclTE = 3;

Message class 3 (terminal equipment)

mclDefault
const
 mclDefault = 'FF';

default message class, safe option for all mobiles (some mobiles do not display non default
value)

Boomerang Library Guide

 - 27 -

Unit EMIX
EMIX.OCX is ActiveX library developed in Delphi and can be used in any application that
supports ActiveX components (Visual Basic, MS Word, etc.).
Before using it's necessary to register ActiveX using common Windows tool regsvr32 emix.ocx .
In non-Delphi environment is necessary to register also stdvcl32.dll library.

TEMIClientX
type
 TEMIClientX = class(TOleComponent);

TEMIClientX is a non-visual component for connecting to SMSC center using EMI protocol
(TCP/IP). Component support both apartment and free threading model. The component
provides functionality of TEMIClient (p.21) and TClientSocketConnection (p.53).

Params (TEMIClientX)

published
 property Params: IStrings read write;

In Params are stored all EMI protocol configuration parameters. It's possible setup all TEMIClient

(p.21).Params (p.21) parameters and in addition following ones:

IP=<ip>
IP address of SMSC, see also TClientSocketConnection (p.53).Address (p.53)

PORT=<port>
Port of SMSC, see also TClientSocketConnection (p.53).Port (p.53)

RECONNECT_TIMEOUT=<sec>
Default: 60
Interval that is used when connection has been broken and component does periodical attempts
for reconnection. If 0 no reconnecting.

SMT_KEEPALIVE_INTERVAL=<sec>
Default: 300
The component is sending keep-alive datagrams to inform SMSC that connection is alive. If 0
keep-alive notification is disabled.

ETX_TIMEOUT=<msec>
Default: 1000
See TEMIClient (p.21).ETXTimeout (p.23)

REC_TIMEOUT=<msec>
Default: 3000
See TEMIClient (p.21).RecTimeout (p.23)

Boomerang Library Guide

 - 28 -

REPEAT_COUNT=<times>
Default: 2
See TEMIClient (p.21).RepeatCount (p.22)

REPEAT_TIMEOUT=<msec>
Default: 500
See TEMIClient (p.21).RepeatTimeout (p.23)

Active (TEMIClientX)

public
 property Active: WordBool read write;

See TEMIClient (p.21).Active

LastErrorStr (TEMIClientX)

public
 property LastErrorStr: WideString read;

Reason of last error

See also
Submit (p.28)

Busy (TEMIClientX)

public
 procedure Busy;

See TEMIClient (p.21).Busy (p.23)

Unbusy (TEMIClientX)

public
 procedure Unbusy;

See TEMIClient (p.21).Unbusy (p.24)

IsBusy (TEMIClientX)

public
 function IsBusy{}: WordBool;

See TEMIClient (p.21).IsBusy (p.23)

Submit (TEMIClientX)

public
 function Submit(
 const TargetNumber: WideString;
 const Msg: WideString;
 Binary: WordBool;
 MCLs: Byte;
 PID: Byte;
 NT: Byte;
 RPI: Byte;
 Validity: TDateTime): TDateTime;

See TEMIClient (p.21).smSubmit (p.24)

Boomerang Library Guide

 - 29 -

If an error occurs result is 0. Check LastErrorStr (p.28) property to obtain error message.

TestConnection (TEMIClientX)

public
 function TestConnection{}: WordBool;

See TEMIClient (p.21).smTestConnection (p.24)

SetParam (TEMIClientX)

public
 procedure SetParam(
 const Name: WideString;
 const Value: WideString);

Set one parameter to Params (p.27).

GetParam (TEMIClientX)

public
 function GetParam(const Name: WideString): Wide String;

Read one parameter from Params (p.27)

OnBusyChanged (TEMIClientX)

published
 property OnBusyChanged: TEMIClientXOnBusyChanged (p. Chyba! Záložka není definována.) read write;

See TEMIClient (p.21).OnBusyChanged (p.24)

OnLog (TEMIClientX)

published
 property OnLog: TEMIClientXOnLog (p. Chyba! Záložka není definována.) read write;

Enables logging of communication into file or a terminal. Use a TLogger object because event is
fired in not VCL thread.

See also
TLogger.PreformatText

OnRxCommand (TEMIClientX)

published
 property OnRxCommand: TEMIClientXOnRxCommand (p. Chyba! Záložka není definována.) read write;

See TEMIClient (p.21).OnRxCommand (p.25)
There is one more parameter Item that contains SMS message (if non equal to Null).
Note: Item is passed by reference due to functionality only, no effect if value changed in event

See also
IEMIRetrieveDeliveryItem (p.30), IEMIRetrieveDeliveryNotificationItem (p.30)

OnRxCommandBeforeAcknowledge (TEMIClientX)

published
 property OnRxCommandBeforeAcknowledge: TEMIClient XOnRxCommandBeforeAcknowledge (p. Chyba! Záložka není

See TEMIClient (p.21).OnRxCommandBeforeAcknowledge (p.25)

Boomerang Library Guide

 - 30 -

There is one more parameter Item that contains SMS message (if non equal to Null).
Note: Item is passed by reference due to functionality only, no effect if value changed in event
Processed parameter
emipfUnprocessed command/SM is stored in command buffer for OnRxCommand (p.29) event
emipfProcessed command/SM is not stored in command buffer for OnRxCommand (p.29) event
emipfAborted command/SM is not acknowledged to SMCS (SMSC will send again command/SM
in future)

See also
IEMIRetrieveDeliveryItem (p.30), IEMIRetrieveDeliveryNotificationItem (p.30)

IEMIRetrieveDeliveryItem
type
 IEMIRetrieveDeliveryItem = interface(IDispatch) ;

Data of received SM, See EMI documentation

See also
TEMIClient (p.21).OnRxCommand (p.25), TEMIClient (p.21).OnRxCommandBeforeAcknowledge (p.25),
IEMIRetrieveDeliveryNotificationItem (p.30)

IEMIRetrieveDeliveryNotificationItem
type
 IEMIRetrieveDeliveryNotificationItem = interface(IDispatch);

Data of received SM notification. See EMI documentation

See also
TEMIClient (p.21).OnRxCommand (p.25), TEMIClient (p.21).OnRxCommandBeforeAcknowledge (p.25),
IEMIRetrieveDeliveryItem (p.30)

Boomerang Library Guide

 - 31 -

Unit GDEP
The SMSC Game Data Exchange Protocol (GDEP) is based on a SMPP protocol (currently
version 1.5).
GDEP support sending and receiving of SM, MMS, processing WAP, managing game accounts.
There is implemented support for plain HTTP (via VPN) or for HTTPS (via public internet).
GDEP connection was tested for Orange Slovakia operator.

TGDEPClient
type
 TGDEPClient = class(TLogConnection);

Object for client connection to SMS center (SMSC).

Boomerang Library Guide

 - 32 -

Unit GSM
The GSM objects facilitate a communication with GSM modems. Using these objects the
modem logs in a GSM network, can be controlled via AT commands, SMS can be sent and
received.

TSMS
type
 TSMS = class;

Abstract object that implements the SMS message features (both the SMS and cell broadcasts)
Parameter and constant purpose is described in GSM and SMS documentation.

Get2Bits (TSMS)

protected
 function Get2Bits(
 aVar: Byte;
 Index: Integer): Byte;

Returns one bit from aVars.

Set2Bits (TSMS)

protected
 procedure Set2Bits(
 var aVar: Byte;
 Index: Integer;
 Value: Byte);

Returns double bits from aVars

EncodePDU (TSMS)

protected
 function EncodePDU{}: TString; virtual; abstract;

Encodes PDU message according to object values.

DecodePDU (TSMS)

protected
 procedure DecodePDU(const Value: TString); virt ual; abstract;

Decodes PDU string a stores values to object.

TSMS2
type
 TSMS2 = class(TSMS (p.32));

Class adds features for all non-cell broadcasts messages.
Phone numbers in OA or DA properties can be international - prefixed '+' , local (national) - no
prefix or alias - prefixed '#' .

Boomerang Library Guide

 - 33 -

Examples:
0602123456 national +420602123456 international #4616 alias, short number

CreateSMS (TSMS2)

public
 class function CreateSMS(
 aOwner: TGSM (p.34) ;
 const aPDU: TString;
 aMTDir: Boolean): TSMS2 (p.32) ;

Creates correct TSMS2 (p.32) class instance according to type of PDU message
aMTDir :

If True expected message direction is mobile terminated SMS.

TSMSDeliver
type
 TSMSDeliver = class(TSMS2 (p.32));

Implements the mobile terminated (SMS-DELIVER, received) SMS features.

TSMSSubmit
type
 TSMSSubmit = class(TSMS2 (p.32));

Implements the mobile originating (SMS-SUBMIT) SMS features.

TSMSStatusReport
type
 TSMSStatusReport = class(TSMS2 (p.32));

Implements the SMS-STATUS-REPORT features.

TSMSCommand
type
 TSMSCommand = class(TSMS2 (p.32));

Implements the SMS-COMMAND features.

TSMSDeliverReport
type
 TSMSDeliverReport = class(TSMS2 (p.32));

Implements the SMS-DELIVERY-REPORT features.

Boomerang Library Guide

 - 34 -

TSMSSubmitReport
type
 TSMSSubmitReport = class(TSMSDeliverReport (p.33));

Implements the SMS-SUBMIT-REPORT features.

TCellBroadcast
type
 TCellBroadcast = class(TSMS (p.32));

Implements the cell broadcast features.

TGSMAsyncThread
type
 TGSMAsyncThread = class(TThread);

Thread receiving characters from TGSM (p.34).COMDevice (p.35).

TGSM
type
 TGSM = class(TConnection);

Object communicates with a GSM modem. Now are supported these modules (modems):
• Siemens A1
• Siemens M1
• Siemens M20
• Siemens TC35
• Ericsson GM12
• Nokia 6210
• Nokia 9110
• Nokia 6650
• Nokia 6600 (seems no delivery status and uindOnlyIndication supported)
• Siemens M35, S35, C45, ME/S45, S55
• Motorola Timeport T260
• Wavecom
• Wavecom Fasttrack
• Fargo Maestro
The both SMS message formats are implemented, the text format and the PDU format. When
the modem supports both formats, the PDU is recommended. Other modems have not been yet
tested, but probably should work.
Siemens C45, ME/S45 works as Siemens M35. It is useful to reset the Baud rate for ME/S45,
as they handle higher speeds, which can be customized in the mobile.

Equipment (TGSM)

published
 property Equipment: TGSMEquipment (p. Chyba! Záložka není definována.) read write;

Boomerang Library Guide

 - 35 -

The modem type, see eqxxxx constants. Set this value before SetDefaults (p.37) or Open method is
called.

SMSFormat (TGSM)

published
 property SMSFormat: Byte read write;

The type of SMS format (use smsfPDU, smsfText constants)

UnsolicitedIndication (TGSM)

published
 property UnsolicitedIndication: TGSMUnsolicitedIn dicationSet (p. Chyba! Záložka není definována.) read write;

Enabled/disables the unsolicited error notification from the modem to the computer, see AT+CNMI.

PIN (TGSM)

published
 property PIN: TString read write;

The PIN of the SIM card in the modem, see AT+CPIN.

SCA (TGSM)

published
 property SCA: TString read write;

The SMS center number (format is for ex. +420602123456), see AT+CSCA

COMDevice (TGSM)

published
 property COMDevice: TComm (p.16) read write;

The device that is connected modem to.

CommandEcho (TGSM)

published
 property CommandEcho: Boolean read write
 default True;

Enable/disable serial port command echo

ExtendedErrorMsg (TGSM)

published
 property ExtendedErrorMsg: Boolean read write
 default False;

see AT+CMEE command

RepeatCount (TGSM)

published
 property RepeatCount: Integer read write
 default 5;

How many times object will try to repeat sending a command if an error occurs.

Boomerang Library Guide

 - 36 -

RecTimeout (TGSM)

published
 property RecTimeout: LongInt read write
 default 6000;

The timeout in ms used when the object is waiting for character receiving.

RepeatTimeout (TGSM)

published
 property RepeatTimeout: LongInt read write
 default 500;

The timeout in ms used when the object is waiting for next attempt of command sending.

IsBusy (TGSM)

public
 property IsBusy: Boolean read;

Returns True if serial port is locked using the Busy (p.37) method.

See also
Unbusy (p.37) OnBusyChanged (p.41)

LastError (TGSM)

public
 property LastError: Integer read write;

Returns the last error code.

LastErrorMsg (TGSM)

public
 property LastErrorMsg: TString read write;

Returns the last error description.

ErrorCodes (TGSM)

public
 property ErrorCodes: TStrings read write;

List of possible error codes with description

NetworkRegistration (TGSM)

public
 property NetworkRegistration: Integer read;

The status code indicating current GSM network registration, see AT+CREG.

mem1 (TGSM)

public
 property mem1: TString read write;

Modem SMS storage location used for reading messages, see AT+CPMS command.

Boomerang Library Guide

 - 37 -

ManufacturerId (TGSM)

public
 property ManufacturerId: TString read GetMEId (p. Chyba! Záložka není definována.) ;

Id returned by AT+CGMI command. May be used in both active and inactive states. If is in active
state value is cached to ask modem only once.

ModelId (TGSM)

public
 property ModelId: TString read GetMEId (p. Chyba! Záložka není definována.) ;

Id returned by AT+CGMM command. May be used in both active and inactive states. If is in active
state value is cached to ask modem only once.

RevisionId (TGSM)

public
 property RevisionId: TString read GetMEId (p. Chyba! Záložka není definována.) ;

Id returned by AT+CGMR command. May be used in both active and inactive states. If is in active
state value is cached to ask modem only once.

SerialNumberId (TGSM)

public
 property SerialNumberId: TString read GetMEId (p. Chyba! Záložka není definována.) ;

Id returned by AT+CGSN command. May be used in both active and inactive states. If is in active
state value is cached to ask modem only once.

SetDefaults (TGSM)

public
 procedure SetDefaults;

Sets all the default modem parameters (for ex. TCommHandle (p.13).Baudrate (p.13)) according the
Equipment (p.34) value.

Busy (TGSM)

public
 procedure Busy;

Locks the modem serial port. It is necessary to not to interrupt current modem communication.

See also
Unbusy (p.37) OnBusyChanged (p.41) IsBusy (p.36)

Unbusy (TGSM)

public
 procedure Unbusy;

Unlocks the modem serial port. It is necessary to not to interrupt current modem
communication.

See also
Busy (p.37) OnBusyChanged (p.41) IsBusy (p.36)

Boomerang Library Guide

 - 38 -

SendATCommand (TGSM)

public
 function SendATCommand(
 const aCmd: TString;
 aWaitFor: Byte;
 aResultS: TStrings;
 RepCount: Integer = 0): Integer;

Sends the aCmd command to the modem and according to the aWaitFor argument is waiting
for the modem result.

Examples:

 CheckAT(SendATCommand('AT+CPIN?', atrCode+atrPara ms+atrATResponse, Sg));
 CheckAT(SendATCommand('AT+CPIN="1243"', atrCode, nil));
 CheckAT(SendATCommand('AT+CREG?', atrCode+atrPara ms+atrATResponse, nil));
 CheckAT(SendATCommand('AT+CREG=1', atrCode, nil)) ;
 CheckAT(SendATCommand('AT+CSCA="+420602909909"', atrCode, nil));
 CheckAT(SendATCommand('AT+CMGS="+420602123456" >Hello', atrCode+atrParams+atrBothNecessary+atrATRe sponse+atrPDU, nil));
 CheckAT(SendATCommand('AT+CMGR=18' atrCode+atrPar ams, Sg));
 CheckAT(SendATCommand('AT+CMGD=25', atrCode, nil));
 CheckAT(SendATCommand('AT+CMGL=1', atrCode+atrPar ams, Sg));

This function is not necessary call directly when sending or receiving SMS messages. Use the
SendSMS (p.38), ReadSMS (p.39), DeleteSMS (p.39) and GetSMSList (p.39) functions.
aCmd:

AT command to be sent
aWaitFor :

The aWaitFor constants: atrCode - command returns OK or ERROR response atrParams -
command returns some parameters atrBothNecessary - command returns both some
parameters and the OK/ERROR response atrPDU - command is a PDU command and
modem will return prompt ' >' atrATResponse - command returns parameters prefixed by
'+cmd:' atrCRLF - internal meaning

aResultS :
When command returns parameters they are returned in the aResultS argument.

RepCount :
How many times command can be repeated if error is returned.

result :
The function returns a error code that can be passed through the pipe CheckAT (p.38) function.

CheckAT (TGSM)

public
 function CheckAT(aRes: Integer): Integer;

The pipe function checks the aRes error code and the exception is fired if not OK.

SendSMS (TGSM)

public
 procedure SendSMS(aSMS: TSMS2 (p.32));

Sends a SMS message, see AT+CMGS.

Boomerang Library Guide

 - 39 -

ReadSMS (TGSM)

public
 function ReadSMS(
 aIndex: Integer;
 var Stat: Integer): TSMS (p.32) ;

Reads a SMS corresponding to the aIndex argument. In the aStat is returned a SMS status
code (read, sent, unsent, unread, etc.), see AT+CMGR.

See also
mem1 (p.36)

DeleteSMS (TGSM)

public
 procedure DeleteSMS(aIndex: Integer);

Deletes a SMS message from the modem list, see AT+CMGD.

GetSMSList (TGSM)

public
 function GetSMSList(aStat: Integer): TStrings;

Returns the list of SMS messages corresponding the aStat argument (read, sent, unsent,
unread, etc.), see AT+CMGL.
aStat :

kind of SMSes according its status code (read, sent, unsent, unread, etc.) to be retrieved
result :

TStringList collection containing retrieved SMSes. Format of item is <idx>=<stat> . Where idx>
is index (identifier) returned by modem. Use this number to reference SMS in ReadSMS (p.39) and
DeleteSMS (p.39) or when using direct AT commands. <stat> is status of the SMS (the same as
aStat). If SMS contents was retrieved it's stored into a TSMS (p.32) object that is assigned to
appropriate Objects[] item.

See also
mem1 (p.36)

SwitchOff (TGSM)

public
 procedure SwitchOff;

Sends the software switch-off modem command. It is not supported by all the GSM modems.

GetSupportedSMSFormats (TGSM)

public
 function GetSupportedSMSFormats{}: TByteSet (p. Chyba! Záložka není definována.) ;

Returns supported SMS formats of current Equipment (p.34).

See also
smsfPDU smsfText

Boomerang Library Guide

 - 40 -

OpenComDevice (TGSM)

protected
 procedure OpenComDevice;

Opens assigned COMDevice (p.35) and save its setting (TCommHandle (p.13).OnRxChar (p.15), etc.).

See also
CloseComDevice

CloseComDevice (TGSM)

protected
 procedure CloseComDevice(aRestore: Boolean);

Clese assigned com device. If aRestore restores COMDevice (p.35) properties saved in OpenComDevice

(p.40).

ProcessRxLine (TGSM)

protected
 procedure ProcessRxLine(const aLine: TString); virtual;

Process line received from COMDevice (p.35). Procedure try to recognize unsolicited messages and
error codes.

GetCMGLength (TGSM)

protected
 function GetCMGLength(aSMS: TSMS2 (p.32)): Integer; virtual;

Returns <length> of AT+CMGS and AT+CMGW commands. This length is very dependant on Equipment

(p.34) and firmware version. Override if errors are returned when sending messages.

SCAinPDU (TGSM)

protected
 function SCAinPDU{}: Boolean;

True if the SMS center number is required before the PDU encoded data. It may depend on the
modem type and even on firmware number (for ex. Siemens A1).

OnRxChar (TGSM)

published
 property OnRxChar: TRxCharEvent (p. Chyba! Záložka není definována.) read write;

The event is called in the VCL thread when a char is received from the modem.

OnUnsolicitedLine (TGSM)

published
 property OnUnsolicitedLine: TUnsolicitedLineEvent (p. Chyba! Záložka není definována.) read write;

The event is called in the VCL thread when an unsolicited notification is received from the
modem.

OnUnsolicitedSMS (TGSM)

published
 property OnUnsolicitedSMS: TUnsolicitedSMSEvent (p. Chyba! Záložka není definována.) read write;

Boomerang Library Guide

 - 41 -

The event is called in the VCL thread when a SMS is received

OnNetworkRegistration (TGSM)

published
 property OnNetworkRegistration: TNetworkRegistrat ionEvent (p. Chyba! Záložka není definována.) read write;

The event is called in the VCL thread when the GSM network registration is changed (login,
logout, etc.).

See also
NetworkRegistration (p.36)

OnBusyChanged (TGSM)

published
 property OnBusyChanged: TBusyChanged (p. Chyba! Záložka není definována.) read write;

The event is called when the IsBusy (p.36) flag is changed.

See also
Busy (p.37) Unbusy (p.37)

EGSMError
type
 EGSMError = class(EComError (p.18));

Exception raised when error occurs in TGSM (p.34).

DTToValPer
function DTToValPer(DT: TDateTime): Byte;

Translates between the TDateTime and the SMS validity period

See also
ValPerToDT (p.41)

ValPerToDT
function ValPerToDT(VP: Byte): TDateTime;

Translates between the TDateTime and the SMS validity period

See also
DTToValPer (p.41)

StripATResponse
function StripATResponse(const S: TString): TStri ng;

Strips modem AT response prefix.

Boomerang Library Guide

 - 42 -

See also
IsATResponse (p.42)

IsATResponse
function IsATResponse(const S: TString): Boolean;

Returns True if string S is modem response, for ex. '+CNMI:' or 'CMSO:' .

See also
StripATResponse (p.41)

ExtractParam
function ExtractParam(
 const S: TString;
 var Pos: Integer): TString;

Extract integer parameter set from string S received from modem, for ex. +CNMI: 2,1,0,0,0 .
Equivavelent of ExtractFieldName but delimiter is comma (',').

ExtractParamSet
function ExtractParamSet(
 const S: TString;
 var Pos: Integer): TByteSet (p. Chyba! Záložka není definována.) ;

Extract interger parameter set from string S received from modem, for ex. +CNMI: (0-3),(0-

3),(0-2),0,(0-1) .

See also
ExtractParam (p.42)

TrimQuotes
function TrimQuotes(const S: TString): TString;

Trim quotes chars (")

GSMError
procedure GSMError(const Msg: string);

Raises EGSMError

ISOtoSMS
function ISOtoSMS(ISOstring: TString): TString;

Translates ISOString from ISO to GSM code page.

Boomerang Library Guide

 - 43 -

See also
SMSToISO

SMStoISO
function SMStoISO(SMSstring: TString): TString;

Translates SMSString from GSM to ISO code page.

See also
ISOToSMS

Str2GMSEquipment
function Str2GMSEquipment(const S: TString): TGSM Equipment (p. Chyba! Záložka není definována.) ;

Converts short equipment name to equipment enumeration.

See also
GSMEquipmentShortName (p.43)

StatS
const
 StatS: array[0 .. 4] of TString=
 ('REC UNREAD'
 , 'REC READ'
 , 'STO UNSENT'
 , 'STO SENT'
 , 'ALL'
);

Enumeration of strings used in <stat> parameter in AT+CMGL and AT+CMGR.

GSMEquipmentShortName
const
 GSMEquipmentShortName: array[TGSMEquipment (p. Chyba! Záložka není definována.)] of string=
 ('A1'
 , 'M1'
 , 'M20'
 , 'GM12'
 , 'Nokia6210'
 , 'Nokia6650'
 , 'Nokia9110'
 , 'M35'
 , 'S25'
 , 'T260'
 , 'WaveCom'
 , 'TC35'
 , 'Fasttrack'
);

Boomerang Library Guide

 - 44 -

List of equipment short names, usable for ex. for storing to INI files

GSMEquipmentLongName
const
 GSMEquipmentLongName: array[TGSMEquipment (p. Chyba! Záložka není definována.)] of string=
 ('Siemens A1'
 , 'Siemens M1'
 , 'Siemens M20'
 , 'Ericsson GM12'
 , 'Nokia 6210'
 , 'Nokia 6650'
 , 'Nokia 9110'
 , 'Siemens M35'
 , 'Siemens S25'
 , 'Motorola T260'
 , 'WaveCom'
 , 'Siemens TC35'
 , 'Wavecom Fasttrack'
);

List of equipment long names, usable for ex. for combo boxes

Boomerang Library Guide

 - 45 -

Unit GSMX
GSMX.OCX is ActiveX library developed in Delphi and can be used in any application that supports
ActiveX components (Visual Basic, MS Word, etc.).
Before using it's necessary to register ActiveX using common Windows tool regsvr32 gsmx.ocx .
In non-Delphi environment is necessary to register also stdvcl32.dll library.
The library uses the same name conventions as GSM (p.32) unit. There are only minor differences:
• set of bytes -> bit mask (in word)
• strings -> WideString
• Boolean -> WordBool
• classes -> interfaces

TGSMX
type
 TGSMX = class(TOleComponent);

TEMIClientX is a non-visual component for connecting to GSM module. Component support
both apartment and free threading model. The component provides functionality of TGSM (p.34) and
TComm (p.16).

Active (TGSMX)

published
 property Active: WordBool read write stored False ;

See TGSM (p.34).Active

ErrorCodes (TGSMX)

published
 property ErrorCodes: IStrings read write stored F alse;

See TGSM (p.34).ErrorCodes (p.36)

Mem1 (TGSMX)

published
 property Mem1: WideString read write stored False ;

See TGSM (p.34).mem1 (p.36)

Equipment (TGSMX)

published
 property Equipment: TOleEnum read write stored Fa lse;

See TGSM (p.34).Equipment (p.34)

SMSFormat (TGSMX)

published
 property SMSFormat: TOleEnum read write stored Fa lse;

See TGSM (p.34).SMSFormat (p.35)

Boomerang Library Guide

 - 46 -

UnsolicitedIndication (TGSMX)

published
 property UnsolicitedIndication: Integer read writ e stored False;

See TGSM (p.34).UnsolicitedIndication (p.35)
There is difference because ActiveX property is treated as bitmask (not set of bytes)

PIN (TGSMX)

published
 property PIN: WideString read write stored False;

See TGSM (p.34).PIN (p.35)

SCA (TGSMX)

published
 property SCA: WideString read write stored False;

See TGSM (p.34).SCA (p.35)

CommandEcho (TGSMX)

published
 property CommandEcho: WordBool read write stored False;

See TGSM (p.34).CommandEcho (p.35)

ExtendedErrorMsg (TGSMX)

published
 property ExtendedErrorMsg: WordBool read write st ored False;

See TGSM (p.34).ExtendedErrorMsg (p.35)

RepeatCount (TGSMX)

published
 property RepeatCount: Integer read write stored F alse;

See TGSM (p.34).RepeatCount (p.35)

RecTimeout (TGSMX)

published
 property RecTimeout: Integer read write stored Fa lse;

See TGSM (p.34).RecTimeout (p.36)

RepeatTimeout (TGSMX)

published
 property RepeatTimeout: Integer read write stored False;

See TGSM (p.34).RepeatTimeout (p.36)

DeviceName (TGSMX)

published
 property DeviceName: WideString read write stored False;

See TComm (p.16).DeviceName (p.16)

Boomerang Library Guide

 - 47 -

Parity (TGSMX)

published
 property Parity: TOleEnum read write stored False ;

See TCommHandle (p.13).Parity (p.13)

StopBits (TGSMX)

published
 property StopBits: TOleEnum read write stored Fal se;

See TCommHandle (p.13).Stopbits (p.13)

BaudRate (TGSMX)

published
 property BaudRate: TOleEnum read write stored Fal se;

See TCommHandle (p.13).Baudrate (p.13)

DataBits (TGSMX)

published
 property DataBits: TOleEnum read write stored Fal se;

See TCommHandle (p.13).Databits (p.13)

CheckInterval (TGSMX)

published
 property CheckInterval: Integer read write stored False;

TGSMX (p.45) checks periodicaly the GSM module in CheckInterval (in sec) and rereads received
SMS (GetSMSList (p.49)). Even UnsolicitedIndication (p.46) and OnUnsolicitedSMS (p.50) event are
applied some SMS may leeave uncaught (and stored in module memory). If a unread SMS is
obtained then is passed to OnUnsolicitedSMS (p.50) event.
If CheckInterval is zero, no checking is processed.

LastError (TGSMX)

public
 property LastError: Integer read;

See TGSM (p.34).LastError (p.36)

IsBusy (TGSMX)

public
 property IsBusy: WordBool read;

See TGSM (p.34).IsBusy (p.36)

LastErrorMsg (TGSMX)

public
 property LastErrorMsg: WideString read;

See TGSM (p.34).LastErrorMsg (p.36)

Boomerang Library Guide

 - 48 -

NetworkRegistration (TGSMX)

public
 property NetworkRegistration: Integer read;

See TGSM (p.34).NetworkRegistration (p.36)

ManufacturerId (TGSMX)

public
 property ManufacturerId: WideString read;

See TGSM (p.34).ManufacturerId (p.37)

ModelId (TGSMX)

public
 property ModelId: WideString read;

See TGSM (p.34).ModelId (p.37)

RevisionId (TGSMX)

public
 property RevisionId: WideString read;

See TGSM (p.34).RevisionId (p.37)

SerialNumberId (TGSMX)

public
 property SerialNumberId: WideString read;

See TGSM (p.34).SerialNumberId (p.37)

SupportedSMSFormats (TGSMX)

public
 property SupportedSMSFormats: Word read;

See TGSM (p.34).GetSupportedSMSFormats (p.39)

Busy (TGSMX)

public
 procedure Busy;

See TGSM (p.34).Busy (p.37)

Unbusy (TGSMX)

public
 procedure Unbusy;

See TGSM (p.34).Unbusy (p.37)

SetDefaults (TGSMX)

public
 procedure SetDefaults;

See TGSM (p.34).SetDefaults (p.37)

Boomerang Library Guide

 - 49 -

SendATCommand (TGSMX)

public
 function SendATCommand(
 const Cmd: WideString;
 WaitFor: Byte;
 var ResultS: IStrings;
 RepCount: Integer): Integer;

See TGSM (p.34).SendATCommand (p.38)

SendSMS (TGSMX)

public
 procedure SendSMS(const SMS: ISMS2);

See TGSM (p.34).SendSMS (p.38)

ReadSMS (TGSMX)

public
 function ReadSMS(
 Index: Integer;
 out Stat: Integer): ISMS;

See TGSM (p.34).ReadSMS (p.39)

DeleteSMS (TGSMX)

public
 procedure DeleteSMS(Index: Integer);

See TGSM (p.34).DeleteSMS (p.39)

GetSMSList (TGSMX)

public
 function GetSMSList(Stat: Integer): IStrings2 (p.50) ;

See TGSM (p.34).GetSMSList (p.39)

SwitchOff (TGSMX)

public
 procedure SwitchOff;

See TGSM (p.34).SwitchOff (p.39)

SendChar (TGSMX)

public
 procedure SendChar(const S: WideString);

Send raw characters to GSM module. If object is not Active (p.45) opens communication port
(only). Module response is passed to OnRxChar (p.49) event.

OnRxChar (TGSMX)

published
 property OnRxChar: TGSMXOnRxChar (p. Chyba! Záložka není definována.) read write;

See TGSM (p.34).OnRxChar (p.40)

Boomerang Library Guide

 - 50 -

OnUnsolicitedLine (TGSMX)

published
 property OnUnsolicitedLine: TGSMXOnUnsolicitedLin e (p. Chyba! Záložka není definována.) read write;

See TGSM (p.34).OnUnsolicitedLine (p.40)

OnUnsolicitedSMS (TGSMX)

published
 property OnUnsolicitedSMS: TGSMXOnUnsolicitedSMS (p. Chyba! Záložka není definována.) read write;

See TGSM (p.34).OnUnsolicitedSMS (p.40)

OnNetworkRegistration (TGSMX)

published
 property OnNetworkRegistration: TGSMXOnNetworkReg istration (p. Chyba! Záložka není definována.) read write;

See TGSM (p.34).OnNetworkRegistration (p.41)

OnBusyChanged (TGSMX)

published
 property OnBusyChanged: TGSMXOnBusyChanged (p. Chyba! Záložka není definována.) read write;

See TGSM (p.34).OnBusyChanged (p.41)

IStrings2
type
 IStrings2 = interface(IStrings);

Extensions of IStrings interface that support objects associated to string (like TStrings.Objects)

Objects (IStrings2)

published
 property Objects[Index: Integer]: OleVariant re ad write;

Associated object array

ISMS
type
 ISMS = interface(IDispatch);

See TSMS (p.32)

ISMS2
type
 ISMS2 = interface(ISMS (p.50));

See TSMS2 (p.32)

Boomerang Library Guide

 - 51 -

ISMSDeliver
type
 ISMSDeliver = interface(ISMS2 (p.50));

See TSMSDeliver (p.33)

ISMSSubmit
type
 ISMSSubmit = interface(ISMS2 (p.50));

See TSMSSubmit (p.33)

ISMSStatusReport
type
 ISMSStatusReport = interface(ISMS2 (p.50));

See TSMSStatusReport (p.33)

ISMSCommand
type
 ISMSCommand = interface(ISMS2 (p.50));

See TSMSCommand (p.33)

ISMSDeliverReport
type
 ISMSDeliverReport = interface(ISMS2 (p.50));

See TSMSDeliverReport (p.33)

ISMSSubmitReport
type
 ISMSSubmitReport = interface(ISMSDeliverReport (p.51));

See TSMSSubmitReport (p.34)

ICellBroadcast
type
 ICellBroadcast = interface(ISMS (p.50));

See TCellBroadcast (p.34)

Boomerang Library Guide

 - 52 -

IGlobal
type
 IGlobal = interface(IDispatch);

Interface that provides global procedures declared in GSM (p.32) and CommConnect (p.13) units. To call
the procedure create an Global object and appropriate procedure.
Note: I don't know how to declare global ActiveX procedures. It's possible implement into OCX
classic DLL stdcall procedures but it does not work correctly with Visual Basic because no
automation interface is exposed (Widestring/BSTR problems)

Boomerang Library Guide

 - 53 -

Unit ScktConnect
Unit defines classes for socket connection using TCommunicationConnection class

TClientSocketConnection
type
 TClientSocketConnection = class(TCommunicationCo nnection);

Object for connecting using TCP/IP socket to server. Object implements client socket side.

Address (TClientSocketConnection)

published
 property Address: string read write;

server address, see TCustomWinSocket

Host (TClientSocketConnection)

published
 property Host: string read write;

server host address, see TCustomWinSocket

Port (TClientSocketConnection)

published
 property Port: Integer read write;

see TCustomWinSocket

Service (TClientSocketConnection)

published
 property Service: string read write;

see TCustomWinSocket

Socket (TClientSocketConnection)

public
 property Socket: TCustomWinSocket read;

Communication thread instance

Boomerang Library Guide

 - 54 -

Unit TAPICom
TAPI objects encapsulate TAPI functionality. With the TAPI it is possible work as with a
common Windows.OpenFile based device. The TAPI uses individual lines. The line is an installed
TAPI device (modem, COM, etc.)
TAPI v-2.0 is supported (Windows9x/NT). Newer version v3.0 used in Windows 2000 is not fully
supported. Devices written for TAPI 3.0 may not work.
Of course there is no compatibility with Kylix.

TTAPILine
type
 TTAPILine = class(TConnection);

Object initializes TAPI, configures TAPI, implements settings saving and restoring.

KeepConnection (TTAPILine)

published
 property KeepConnection: Boolean read write;

If the value is true TAPI remains opened after the last line was closed.

See also
AddLine (p.55) RemoveLine (p.55)

LineApp (TTAPILine)

public
 property LineApp: hLineApp read;

The TAPI handle

NumDevs (TTAPILine)

public
 property NumDevs: Integer read;

Returns number of TAPI lines

Count (TTAPILine)

public
 property Count: Integer read;

Returns number of added lines

Lines (TTAPILine)

public
 property Lines[Index: Integer]: TLineCom (p.56) read; default;

The list of added lines

Boomerang Library Guide

 - 55 -

LineNames (TTAPILine)

public
 property LineNames[aDeviceId: DWord]: string re ad;

Returns the name list of added lines.

APIVersions (TTAPILine)

public
 property APIVersions[aDeviceId: DWord]: DWord r ead;

Reads the version of the aDeviceId line.

DevConfig (TTAPILine)

public
 property DevConfig[aDeviceId: DWord]: string re ad write;

Reads/writes the configuration settings of the aDeviceId line. The returned configuration is
binary and line-dependent.

AddLine (TTAPILine)

public
 procedure AddLine(aLine: TLineCom (p.56));

Adds a line into TAPI the line list. TAPI is initialized when was added first line and will be closed
when is removed the last line (except if KeepConnection (p.54) is True).

See also
RemoveLine

RemoveLine (TTAPILine)

public
 procedure RemoveLine(aLine: TLineCom (p.56));

Removes a line from TAPI the line list. TAPI is initialized when was added first line and will be
closed when is removed the last line (except if KeepConnection (p.54) is True).

See also
AddLine

ShowConfigDialog (TTAPILine)

public
 procedure ShowConfigDialog(aDeviceId: DWord);

Shows the standard line configuration dialog. The settings is possible save or restore by means
of the DevConfig (p.55) property.

ShowTranslateDialog (TTAPILine)

public
 procedure ShowTranslateDialog(
 aDeviceId: DWord;
 aPhoneNumber: string);

Boomerang Library Guide

 - 56 -

Shows the standard line translate dialog (dial parameters). The aPhoneNumber argument is the
modem phone number. It is necessary for proper dial prefix processing or pass empty string if
no phone translation required.

FindDeviceId (TTAPILine)

public
 function FindDeviceId(const aDeviceName: string): DWord;

Returns the line id by the aDeviceName argument.

TLineCom
type
 TLineCom = class(TConnection);

Object implements the TAPI linexxxx functions and implements a concrete connection, for ex.
dialup.
For other here not documented properties see TAPI documentation.

PhoneNumber (TLineCom)

published
 property PhoneNumber: string read write;

The TranslatedPhoneNumber (p.56) property is adjusted value of the PhoneNumber according current
location.

TranslatedPhoneNumber (TLineCom)

public
 property TranslatedPhoneNumber: string read;

The TranslatedPhoneNumber property is adjusted value of the PhoneNumber (p.56) according current
location.

Comm (TLineCom)

public
 property Comm: TLineCommHandle (p. Chyba! Záložka není definována.) read;

This line handle can be used in the TCommHandle (p.13) object as the value of the TCommHandle

(p.13).hCommDev (p.14) property.

Boomerang Library Guide

 - 57 -

Unit XSMS
The unit implements kinds of SMS protocols that enable streaming data longer than max.
allowed length of SM (160/140 characters).

TSMSProtocol
type
 TSMSProtocol = class;

Implements common SM protocol based on fragmenting/concatenating.

Data (TSMSProtocol)

published
 property Data: TString read write;

Data content

Reference (TSMSProtocol)

published
 property Reference: LongInt read write;

Reference data number

FragmentCount (TSMSProtocol)

public
 property FragmentCount: Integer read;

Number of fragments

InsertedCount (TSMSProtocol)

public
 property InsertedCount: Integer read;

Number of inserted fragments

Fragments (TSMSProtocol)

public
 property Fragments[Index: Integer]: TString rea d;

Text content of particular fragments

Status (TSMSProtocol)

public
 property Status: TSMSProtocolStatus (p.81) read;

Status of inserted fragments. Determines if data are completely (all fragments) received. See
InsertFragment (p.58)

Boomerang Library Guide

 - 58 -

Stamp (TSMSProtocol)

public
 property Stamp: TDateTime read;

Stamp when was inserted first fragment, see InsertFragment (p.58)

Clear (TSMSProtocol)

public
 procedure Clear; virtual;

Deletes all fragments and set Status (p.57) to empty.

InsertFragment (TSMSProtocol)

public
 function InsertFragment(const aFragment: TString): TSMSProtocolInsertStatus (p.81) ; virtual; abstract;

Inserts fragment to former inserted fragments
result :

If is smsprOK check Status (p.57) to see if data has been completed.

TSMSProtocol2
type
 TSMSProtocol2 = class(TSMSProtocol (p.57));

Common SMS protocol with port addressing.

SourceAddress (TSMSProtocol2)

published
 property SourceAddress: Word read write;

Address of source application port.

DestinationAddress (TSMSProtocol2)

published
 property DestinationAddress: Word read write;

Address of destination application port.

Options (TSMSProtocol2)

published
 property Options: TSMSProtocolOptionsSet (p. Chyba! Záložka není definována.) read write;

SMS protocol options.

TNBS
type
 TNBS = class(TSMSProtocol2 (p.58));

The component implements narrow band socket protocol (NBS). NBS is the protocol used to
send non-text content over SMS. NBS uses concatenated SMS messages and includes port
number which is really a content type identifier, by which the phone recognize which kind of
content is being sent to it.

Boomerang Library Guide

 - 59 -

OtherHeader (TNBS)

published
 property OtherHeader: TString read write;

Optional other headers of NBS protocol

Binary (TNBS)

published
 property Binary: Boolean read write;

If is True length of particular messages is 140, otherwise is 160.

TIE
type
 TIE = class;

Implements information element (IE) of TUDHProtocol (p.59)

IEI (TIE)

public
 property IEI: Byte read write;

Information element identifier

IED (TIE)

public
 property IED: TString read write;

Information element data

TUDHProtocol
type
 TUDHProtocol = class(TSMSProtocol2 (p.58));

The class implements protocol using user data headers (UDH). In plain SM parameter UDHI
indicating that the UD field contains a header

IEs (TUDHProtocol)

public
 property IEs: TObjectList read;

List of information elements (IE) of TIE (p.59) class

TSiemensOTA
type
 TSiemensOTA = class(TSMSProtocol (p.57));

Starting with the S 45 and ME 45, Siemens mobile phones will provide over-the-air OTA)
download capabilities for different types of content.
This component supports these capabilities according to OTA specification (release 1.0.1).

Boomerang Library Guide

 - 60 -

ObjectName (TSiemensOTA)

published
 property ObjectName: TString read write;

Is the name of the dataobject. If the file-extension is necessary for the processing in the mobile
phone, it has to be provided with the object-name.

ObjectType (TSiemensOTA)

published
 property ObjectType: TString read write;

Is defining the type of the object (Bitmap: 'bmp' , MIDI: 'mid')

TSMSProtocolStack
type
 TSMSProtocolStack = class(TStringList);

The class implements stack of all TSMSProtocol (p.57) packages. All incomming SM are processed
by ProcessSMS (p.60) procedure and are pushed to relevant SMS protocol instance according
originating phone number, reference number and content type (destination port).

ProcessSMS (TSMSProtocolStack)

public
 function ProcessSMS(
 aSMS: TSMS (p.32) ;
 var aId: TSMSProtocol (p.57)): Boolean;

Processes incoming SM and try to find SM protocol instance that belonging to SM content
aSMS:

received SM
aId :

SMProtocol in which has been SM inserted
result :

Return True if SM has been successfully inserted into a SM protocol (returned in aID
parameter)

RemoveSMSProtocol (TSMSProtocolStack)

public
 procedure RemoveSMSProtocol(aId: TSMSProtocol (p.57));

Removes SM protocol instance from stack

CleanSMSProtocols (TSMSProtocolStack)

public
 procedure CleanSMSProtocols(
 aRelativeDT: TDateTime;
 aOnlyNotComplete: Boolean);

Removes protocol instances from the stack that are older than aRelativeDT (and probably won't
be completed)
aRelativeDT :

how old SM protocols should be removed

Boomerang Library Guide

 - 61 -

aOnlyNotComplete :
Remove only not complete SM protocols

TDirectoryRecords
type
 TDirectoryRecords = class(TStringList);

Implements text MIME directory records

Example:

BEGIN:vCard
 VERSION:3.0
 FN:Tim Howes
 ORG:Netscape Communications Corp.
 ADR;TYPE=WORK:;;501 E. Middlefield Rd.;Mountain View;
 CA; 94043;U.S.A.
 TEL;TYPE=VOICE,MSG,WORK:+1-415-937-3419
 TEL;TYPE=FAX,WORK:+1-415-528-4164
 EMAIL;TYPE=INTERNET:howes@netscape.com
END:vCard

FoldingLength (TDirectoryRecords)

published
 property FoldingLength: Integer read write;

Number of max. line length. Longer line are wrapped using folding technique.

Data (TDirectoryRecords)

published
 property Data: TString read write;

Lists the fields in the TDirectoryRecords object as a single string with the individual strings
delimited by carriage returns and line feeds and folded according FoldingLength (p.61).

Kind (TDirectoryRecords)

published
 property Kind: string read write;

Kind of directory record (for ex. 'VCARD').

Params (TDirectoryRecords)

public
 property Params[Index: Integer]: TStrings read;

List of parameters of field determined by index.

ParamsOf (TDirectoryRecords)

public
 property ParamsOf[aName: string]: TStrings read ;

List of parameters of field determined by name.

Boomerang Library Guide

 - 62 -

TSmartMessage
type
 TSmartMessage = class;

The class implements Smart messaging according Smert Message Specification revision 3.0.0 .
Smart messages are supported by Nokia phones.
To see what features are supported by selected phone see
Nokia_Phone_Messaging_Characteristics_v_1_3 document available at Nokia home site
(http://www.forum.nokia.com > http://www.forum.nokia.com).
Most non-Nokia phones support EMS, see TEMS (p.72).

Data (TSmartMessage)

public
 property Data: TString read write;

Content of Smart message

CreateSM (TSmartMessage)

public
 class function CreateSM(
 const aData: TString;
 aPort: Word): TSmartMessage (p.62) ;

Creates class instance according Smart message content and port number.

TSMMIMEDirectory
type
 TSMMIMEDirectory = class(TSmartMessage (p.62));

Common class implementing directory features (TSMvCard (p.62), TSMvCalendar (p.63)) of Smart
messages.

Records (TSMMIMEDirectory)

public
 property Records: TDirectoryRecords (p.61) read;

List of directory items

TSMvCard
type
 TSMvCard = class(TSMMIMEDirectory (p.62));

Business card information transfer is based on the Versit vCard specification. The vCard
specification defines a format for electronic business cards. This format is suitable to be used as
an interchange format between applications or systems, and it is independent of the method
used to transport it. See [RFC_2425], [RFC_2426].

Boomerang Library Guide

 - 63 -

TSMvCalendar
type
 TSMvCalendar = class(TSMMIMEDirectory (p.62));

Calendar information transfer is based on the Versit vCalendar specification. The vCalendar
specification defines a format for electronic calendaring and scheduling. This format is suitable
to be used as an interchange format between applications or systems, and it is independent of
the method used to transport it. The vCalendar enables exchange of event and to-do types of
calendaring and scheduling events. An event represents a scheduled amount of time on a
calendar, and a to-do item represents an action-item or assignment.

TSMOTABitmap
type
 TSMOTABitmap = class(TSmartMessage (p.62));

The OTA bitmap format enables graphical information to be sent to a wide variety of handsets.
Depending on the handset implementation, it may be possible for the user to create graphical
objects and then send them to other handsets. Various applications can use this information to
create a more illustrative and attractive outlook for the application.

InfoFieldCount (TSMOTABitmap)

public
 property InfoFieldCount: Byte read write;

Number of info fields

InfoFields (TSMOTABitmap)

public
 property InfoFields[Index: Integer]: Byte read write;

Content of info fields

AnimatedImageCount (TSMOTABitmap)

public
 property AnimatedImageCount: Integer read write;

Number of animations in OTA bitmap

Width (TSMOTABitmap)

public
 property Width: Integer read write;

Horizontal width of the bitmap in pixels.

Height (TSMOTABitmap)

public
 property Height: Integer read write;

Vertical height of the bitmap in pixels.

Boomerang Library Guide

 - 64 -

Images (TSMOTABitmap)

public
 property Images[Index: Integer]: TBitmap read w rite;

Bitmaps used in OTA bitmap. Bitmaps 1..AnimatedImageCount (p.63)-1 are animated bitmap. Bitmap
0 is mandatory.

ImportFromImage (TSMOTABitmap)

public
 procedure ImportFromImage(aBMP: TBitmap);

Imports image from bitmap according to Width (p.63), Height (p.63) and AnimatedImageCount (p.63).

ExportToImage (TSMOTABitmap)

public
 procedure ExportToImage(aBMP: TBitmap);

Imports image to bitmap according to Width (p.63), Height (p.63) and AnimatedImageCount (p.63).

TSMScreenSaver
type
 TSMScreenSaver = class(TSMOTABitmap (p.63));

Implements screen saver features.

TSMCLIIcon
type
 TSMCLIIcon = class(TSMOTABitmap (p.63));

The Calling Line Identification (CLI) icon is a bitmap, which can be attached to some number or
numbers in the handset’s phonebook (a caller group). When the caller is identified, the attached
CLI icon is shown alongside other appropriate information such as the name and/or number of
the caller. The CLI icon format doesn’t contain any phonebook information so the linking
between the phonebook entry and the CLI icon must be done in the handset.

TSMOperatorLogo
type
 TSMOperatorLogo = class(TSMOTABitmap (p.63));

The Operator Logo is a bitmap, which can be shown alongside the operator identification when
the display of the handset is in idle mode. The Operator Logo format contains operator
identification information. It is up to handset implementation how to this information is used.

MCC (TSMOperatorLogo)

public
 property MCC: Word read write;

GSM Mobile Country Code

Boomerang Library Guide

 - 65 -

MNC (TSMOperatorLogo)

public
 property MNC: Byte read write;

GSM Mobile Network Code

TSMTextISO
type
 TSMTextISO = class(TSmartMessage (p.62));

ISO text message used as part of TSMMultipartMessage (p.71)

Text (TSMTextISO)

public
 property Text: TString read write;

Text of SM

TSMTextUnicode
type
 TSMTextUnicode = class(TSmartMessage (p.62));

UNICODE text message used as part of TSMMultipartMessage (p.71)

Text (TSMTextUnicode)

public
 property Text: WideString read write;

(Wide) text of SM

TSMProfile
type
 TSMProfile = class(TSMTextUnicode (p.65));

Profile used as part of TSMMultipartMessage (p.71)

TBitStream
type
 TBitStream = class;

Auxiliary object used for bit streaming in TSMRingingTone (p.71) class

Data (TBitStream)

public
 property Data: TString read write;

Binary stream data

Boomerang Library Guide

 - 66 -

EOF (TBitStream)

public
 property EOF: Boolean read;

If end of stream is reached

PutFillers (TBitStream)

public
 procedure PutFillers;

Put bits to fill byte

SkipFillers (TBitStream)

public
 procedure SkipFillers;

Skip bits to end of byte

GetBit (TBitStream)

public
 function GetBit{}: Boolean;

Get one bit from stream

PutBit (TBitStream)

public
 procedure PutBit(aVal: Boolean);

Put one bit in stream

GetBits (TBitStream)

public
 function GetBits(aNum: Byte): LongWord;

Get aNum bits from stream

PutBits (TBitStream)

public
 procedure PutBits(
 aVal: LongWord;
 aNum: Byte);

Put aNum bits in stream

Move (TBitStream)

public
 procedure Move(aShift: Integer);

Move current pointer up or down

TSMRTPattern
type
 TSMRTPattern = class;

Boomerang Library Guide

 - 67 -

Implements TSMRingingTone (p.71) pattern

Instructions (TSMRTPattern)

public
 property Instructions: TObjectList read;

List of instructions of TSMRTInstruction (p.67) type

Id (TSMRTPattern)

public
 Id: Byte;

see smrtpidPartx constants

Loop (TSMRTPattern)

public
 Loop: Byte;

Indicates how many times the pattern should be repeated. The value zero means no repeat.
The value 255 means infinite.

TSMRTInstruction
type
 TSMRTInstruction = class;

Implements instruction features of TSMRTPattern (p.66)

CreateFromStream (TSMRTInstruction)

public
 class function CreateFromStream(BS: TBitStream (p.65)): TSMRTInstruction (p.67) ;

Creates class instance from the bit stream

TSMRTNote
type
 TSMRTNote = class(TSMRTInstruction (p.67));

Implements note features

Value (TSMRTNote)

public
 Value: Byte;

note value, see smrtiNotexxxx constants

Duration (TSMRTNote)

public
 Duration: Byte;

note duration, see smrtiDurationxxxx constants

Boomerang Library Guide

 - 68 -

DurationSpecifier (TSMRTNote)

public
 DurationSpecifier: Byte;

note duration specifier, see smrtiDurationSpecxxxx constants

TSMRTScale
type
 TSMRTScale = class(TSMRTInstruction (p.67));

Implements note scale features

NoteScale (TSMRTScale)

public
 NoteScale: Byte;

see smrtiScalexxxx

TSMRTStyle
type
 TSMRTStyle = class(TSMRTInstruction (p.67));

Implements style features

Value (TSMRTStyle)

public
 Value: Byte;

see smrtiStylexxxx

TSMRTTempo
type
 TSMRTTempo = class(TSMRTInstruction (p.67));

Implements tempo features

DecodeBeatsPerMin (TSMRTTempo)

public
 class function DecodeBeatsPerMin(aBeats: Byte): Word;

Converts encoded beats-per-min to plain value in real units.

EncodeBeatsPerMin (TSMRTTempo)

public
 class function EncodeBeatsPerMin(aBeats: Word): Byte;

Converts plain value in real units to encoded beats-per-min value.

Boomerang Library Guide

 - 69 -

BeatsPerMin (TSMRTTempo)

public
 BeatsPerMin: Byte;

Beats per minute encoding, see DecodeBeatsPerMin (p.68), EncodeBeatsPerMin (p.68), smrtiTempoDefault

TSMRTVolume
type
 TSMRTVolume = class(TSMRTInstruction (p.67));

Implements volume features

Value (TSMRTVolume)

public
 Value: Byte;

volume value, see smrtiVolumeDefault

TSMRTCommandPart
type
 TSMRTCommandPart = class;

Common command part of ringing tone (TSMRingingTone (p.71))

CreateFromStream (TSMRTCommandPart)

public
 class function CreateFromStream(BS: TBitStream (p.65)): TSMRTCommandPart (p.69) ;

Creates class instance from bit stream

TSMRTRingingTone
type
 TSMRTRingingTone = class(TSMRTCommandPart (p.69));

Defines name of ringing tone

TSMRTUnicode
type
 TSMRTUnicode = class(TSMRTCommandPart (p.69));

Switches from ISO to UNICODE

TSMRTCancel
type
 TSMRTCancel = class(TSMRTCommandPart (p.69));

Switches from UNICODE to ISO

Boomerang Library Guide

 - 70 -

TSMRTSound
type
 TSMRTSound = class(TSMRTCommandPart (p.69));

Common song class

CreateFromStream (TSMRTSound)

public
 class function CreateFromStream(BS: TBitStream (p.65)): TSMRTCommandPart (p.69) ;

Creates song instance from bit stream

TSMRTTemporarySong
type
 TSMRTTemporarySong = class(TSMRTSound (p.70));

Pattern/instruction defined song

Patterns (TSMRTTemporarySong)

public
 property Patterns: TObjectList read;

List of patterns of TSMRTPattern (p.66) class

TSMRTMidiSong
type
 TSMRTMidiSong = class(TSMRTSound (p.70));

MIDI song, not implemented

TSMRTDigitisedSong
type
 TSMRTDigitisedSong = class(TSMRTSound (p.70));

Digitised song, not implemented

TSMRTPolyphonicSong
type
 TSMRTPolyphonicSong = class(TSMRTSound (p.70));

Polyphonic song, not implemented

TSMRTCommand
type
 TSMRTCommand = class;

Implements commands of TSMRingingTone (p.71)

Boomerang Library Guide

 - 71 -

Parts (TSMRTCommand)

public
 property Parts: TObjectList read;

List of parts of TSMRTCommandPart (p.69)

TSMRingingTone
type
 TSMRingingTone = class(TSmartMessage (p.62));

The ringing tone format enables ringing tones to be sent to a wide variety of handsets.
Depending on the handset implementation, it may be possible for the user to create ringing
tones and then send them to other handsets.
The ringing tone format is handset independent, and describes only the audio related
information. It enables transmission of both basic songs and temporary songs. A basic song is
intended to be saved in a handset while the temporary songs can be used together with an alert
router to implement message notification with a special ringing tone.
See specification of SMS 3.0.0.

Commands (TSMRingingTone)

public
 property Commands: TObjectList read;

Commands parts of ringing tone

RTTTL (TSMRingingTone)

public
 property RTTTL: string read write;

Import/export to RTTTL (Ring Tone Text Transfer Language) format

TSMMultipartMessage
type
 TSMMultipartMessage = class(TSmartMessage (p.62));

The Multipart Message format can be used for sending picture messages and whole profiles to
mobile phones.
A Picture Message is a message format that consists of a picture and a text part. In the
message, the text and the picture may be in either order (i.e. text part first, or picture first).
Neither part is optional.
A Downloadable Profile is a message format that allows the sending of user profiles to mobile
phones. A Downloadable Profile consists of a profile name, a 'screen saver' and a ringing tone.
These three parts may be in any order, and all parts are optional.

Multiparts (TSMMultipartMessage)

public
 property Multiparts: TObjectList read;

List of parts that contain message. The possible parts are ISO/UNICODE text, OTA bitmap,
ringing tone, profile, screen saver

Boomerang Library Guide

 - 72 -

TSMUnknown
type
 TSMUnknown = class(TSmartMessage (p.62));

Smart message of an unknown type

TEMS
type
 TEMS = class;

he Enhanced Messaging Service (EMS) is based upon the standard SMS, but with formatting
added to the text. The formatting may permit the message to contain animations, pictures,
melodies, formatted text, and vCard and vCalendar objects. Objects may be mixed together into
one message.
EMS are supported generally by Sony/Ericsson, Siemens and Alcatel phones. EMS are not
supported by Nokia phones, they are using Smart messages(see TSmartMessage (p.62)).
See Technical realization of the Short Message Service (SMS) (3GPP TS 23.040 V6.0.1).
EMS are transferred using TUDHProtocol (p.59).

Text (TEMS)

public
 property Text: TString read write;

Text of message

Objects (TEMS)

public
 property Objects: TObjectList read;

List of objects in EMS of TEMSObject class

ReadFrom (TEMS)

public
 procedure ReadFrom(aProtocol: TUDHProtocol (p.59));

Reads EMS from SM protocol

WriteTo (TEMS)

public
 procedure WriteTo(aProtocol: TUDHProtocol (p.59));

Writes EMS to SM protocol

TEMSObject
type
 TEMSObject = class;

Implements common EMS object that included into the SM text

Boomerang Library Guide

 - 73 -

IEI (TEMSObject)

public
 property IEI: Byte read;

Information element identifier

IED (TEMSObject)

public
 property IED: TString read write;

Information element data

CreateFromIEI (TEMSObject)

public
 class function CreateFromIEI(aIEI: Byte): TEMSO bject (p.72) ;

Creates class instance according information element identifier

TEMSPosObject
type
 TEMSPosObject = class(TEMSObject (p.72));

Implements common EMS object that has position

Pos (TEMSPosObject)

published
 property Pos: Byte read write;

Position indicating in the SM data the instant the object shall be displayed or played in the SM
data

TEMSUnknown
type
 TEMSUnknown = class(TEMSObject (p.72));

An EMS object of unknown type

Data (TEMSUnknown)

published
 property Data: TString read write;

raw data of OBJECT

TEMSTextFormat
type
 TEMSTextFormat = class(TEMSPosObject (p.73));

Implements EMS objects that affects formatting of SM text

Boomerang Library Guide

 - 74 -

Len (TEMSTextFormat)

published
 property Len: Byte read write;

Length of text that should be affected

Alignment (TEMSTextFormat)

published
 property Alignment: Byte read write;

see emstxtAlignmentxxxx constants

Size (TEMSTextFormat)

published
 property Size: Byte read write;

Size of text, see emstxtSizexxxx

Bold (TEMSTextFormat)

published
 property Bold: Boolean read write;

If text is bold

Italic (TEMSTextFormat)

published
 property Italic: Boolean read write;

If text is italic

Underlined (TEMSTextFormat)

published
 property Underlined: Boolean read write;

If text is underlined

StrikeThrough (TEMSTextFormat)

published
 property StrikeThrough: Boolean read write;

If text is strikethrough

ForegroundColor (TEMSTextFormat)

published
 property ForegroundColor: Byte read write;

Text foreground color, see emsclxxxx constants

BackgroundColor (TEMSTextFormat)

published
 property BackgroundColor: Byte read write;

Text background color, see emsclxxxx constants

Boomerang Library Guide

 - 75 -

TEMSSoundPredef
type
 TEMSSoundPredef = class(TEMSPosObject (p.73));

There are a number of predefined sounds. These sounds are not transferred over the air
interface, only the identification of them. There are 10 different sounds that can be added in the
message, and as soon as the sound mark is in focus (on the display), the sound will be played.

SoundId (TEMSSoundPredef)

published
 property SoundId: Byte read write;

Identification of sound, see emssndxxxx constants

TEMSSoundUserDef
type
 TEMSSoundUserDef = class(TEMSPosObject (p.73));

The sender can define own melodies according to the iMelody format. These melodies are
transferred in the SM and can take up to 128 bytes.

Records (TEMSSoundUserDef)

published
 property Records: TDirectoryRecords (p.61) read;

iMelody definition, see Infrared Data Association. Specifications for Ir Mobile Communications
(IrMC) iMelody)

TEMSAnimationPredef
type
 TEMSAnimationPredef = class(TEMSPosObject (p.73));

There are number of predefined animations. These animations are not sent as animation over
the air interface, only the identification of them. As soon as the position of the animation in the
SM data is reached, the animation corresponding to the received number shall be displayed in a
manner which is manufacturer specific.

AnimationId (TEMSAnimationPredef)

published
 property AnimationId: Byte read write;

identification of animation, see emsanixxxx constants

TEMSPicture
type
 TEMSPicture = class(TEMSPosObject (p.73));

Boomerang Library Guide

 - 76 -

It is possible to include either a small (1616 pixels), large (3232 pixels) or pictures of variable
size. These pictures have neither animation nor grey scale; they are plain black and white. All
pictures are user defined.

Width (TEMSPicture)

published
 property Width: Integer read write;

horizontal size of a picture

Height (TEMSPicture)

published
 property Height: Integer read write;

vertical size of a picture

ImportFromImage (TEMSPicture)

public
 procedure ImportFromImage(aBMP: TBitmap);

Imports image from bitmap according Width (p.76) and Height (p.76)

TEMSPictureVariable
type
 TEMSPictureVariable = class(TEMSPicture (p.75));

Is a picture of variable length

TEMSPictureSmall
type
 TEMSPictureSmall = class(TEMSPicture (p.75));

Is a picture of size 16x16 pixels

TEMSPictureLarge
type
 TEMSPictureLarge = class(TEMSPicture (p.75));

Is a picture of size 16x16 pixels

TEMSAnimation
type
 TEMSAnimation = class(TEMSPosObject (p.73));

The user-defined animations consist of 4 pictures and there are two different sizes of these
animations. The picture size of the small animations is 88 pixels and the large 1616 pixels.
These animations are sent over the air interface.

Boomerang Library Guide

 - 77 -

Width (TEMSAnimation)

published
 property Width: Integer read write;

Horizontal size of an animation

Height (TEMSAnimation)

published
 property Height: Integer read write;

Vertical size of an animation

Images (TEMSAnimation)

public
 property Images[Index: Integer]: TBitmap read w rite;

List of 4 bitmaps that create animation

ImportFromImage (TEMSAnimation)

public
 procedure ImportFromImage(aBMP: TBitmap);

Imports images from bitmap according Width (p.77) and Height (p.77)

ExportToImage (TEMSAnimation)

public
 procedure ExportToImage(aBMP: TBitmap);

Exports four images to bitmap according Width (p.77) and Height (p.77)

TEMSAnimationSmall
type
 TEMSAnimationSmall = class(TEMSAnimation (p.76));

Is an animation of size 8x8 pixels

TEMSAnimationLarge
type
 TEMSAnimationLarge = class(TEMSAnimation (p.76));

Is an animation of size 16x16 pixels

TEMSUserPrompt
type
 TEMSUserPrompt = class(TEMSObject (p.72));

With the User Prompt Indicator a sending entity is able to indicate to the receiving entity, that
the following object is intended to be handled at the time of reception, e.g. by means of user
interaction. The object may be a picture, an animation, a User Defined Sound or a combination
of these.

Boomerang Library Guide

 - 78 -

NumOfObjects (TEMSUserPrompt)

public
 property NumOfObjects: Byte read write;

Number of corresponding objects

TEMSObjectDistributionIndicator
type
 TEMSObjectDistributionIndicator = class(TEMSObje ct (p.72));

This facility allows a level of control to be requested over the distribution of objects contained
within selected information elements in short messages.
If no Object Distribution Indicator is specified for an information element in which an object is
received, then that object may be freely distributed

NumOfIE (TEMSObjectDistributionIndicator)

public
 property NumOfIE: Byte read write;

This octet specifies the number of information elements from 1-255 for which the Distribution
Attributes in the next octet shall apply. The affected objects shall be contained in Information
Elements immediately following this IE and may be contained in subsequent short message
segments within a concatenated short message.

Attrib (TEMSObjectDistributionIndicator)

public
 property Attrib: Byte read write;

see emsodiaxxxx constants

TEMSXObject
type
 TEMSXObject = class(TEMSObject (p.72));

The Extended Object allows an extended code range for format types. The Extended Object
may extend across segment boundaries of a concatenated short message. A single segment
may include one or more Extended Object IEs.

HeaderFlag (TEMSXObject)

published
 property HeaderFlag: Boolean read write;

Include extended object header when encoding/decoding

Reference (TEMSXObject)

published
 property Reference: Byte read write;

A modulo 256 counter indicating the reference number for the Extended Object. Two different
Extended Objects in a single concatenated message shall have different reference numbers.

Boomerang Library Guide

 - 79 -

Pos (TEMSXObject)

published
 property Pos: Word read write;

The Extended Object Position indicates the absolute character position within the message text
after which the object shall be played or displayed. The absolute character position relates to
the entire text within the concatenated message, the first character is numbered character 1.

Attrib (TEMSXObject)

published
 property Attrib: Byte read write;

control byte, see emsxaxxxx constants

DataLength (TEMSXObject)

published
 property DataLength: Word read write;

Length of data

Kind (TEMSXObject)

published
 property Kind: Byte read write;

This octet indicates the format of the Extended Object

Data (TEMSXObject)

published
 property Data: TString read write;

Extended Object Data

TEMSXObjectReused
type
 TEMSXObjectReused = class(TEMSObject (p.72));

his facility is used to reuse an Extended Object in a message which has already been defined in
the same message

Reference (TEMSXObjectReused)

published
 property Reference: Byte read write;

Reference number of the Extended Object to be reused

Pos (TEMSXObjectReused)

published
 property Pos: Word read write;

indicates in the concatenated message the absolute character position after which the object
shall be played or displayed

Boomerang Library Guide

 - 80 -

TEMSXObjectDataRequest
type
 TEMSXObjectDataRequest = class(TEMSObject (p.72));

Upon receiving this IE in an SMS-DELIVER PDU, if an MS supports this request and the
corresponding response, it shall respond with an SMS-DELIVER-REPORT PDU containing a
Data Format Delivery Request as defined in the Extended Object IE. This SMS-DELIVER PDU
may be discarded.

TEMSWVGObject
type
 TEMSWVGObject = class(TEMSPosObject (p.73));

A message may contain one or more Wireless Vector Graphics (WVG) objects. A WVG object is
a vector graphics picture or animation and is scalable. Two subtypes of WVG objects are
supported; Standard WVG object and Character Size WVG object. Actual display size of a
Standard WVG object depends on display screen size and MMI implementation on terminals. A
Character Size WVG object has a height that equals or is similar to the height of message text
but with variable width. Character Size WVG object may be edited in the same way as standard
text, e.g. insertion deletion and text wrapping.

Data (TEMSWVGObject)

published
 property Data: TString read write;

The WVG element is used to describe vector graphics objects. The vector graphics format is
used to allow the creation of small pictures which may include simple animation or the creation
small handwritten sketches. WVG makes use of the graphical primitives. These primitives can
be used to describe a compact drawing.

TEMSWVGObjectStandard
type
 TEMSWVGObjectStandard = class(TEMSWVGObject (p.80));

A Standard WVG object may or may not have fixed size. In either case, display size should be
determined by the terminal implementation. Recommended display size is a largest possible
size on terminal screen while aspect ratio shall be maintained.

TEMSWVGObjectCharSize
type
 TEMSWVGObjectCharSize = class(TEMSWVGObject (p.80));

A Character Size WVG object is a small graphics similar to the size of a typed character. The
display height for a Character Size WVG object is decided by the terminal implementation.
Recommended Character Size WVG object height is to be similar to the message text font
height. The width of a Character Size WVG object is variable depending on the aspect ratio
defined in the object. Character Size WVG objects can appear more than one time in one
message..

Boomerang Library Guide

 - 81 -

TEMSCompressionControl
type
 TEMSCompressionControl = class(TEMSUnknown (p.73));

This information element is used to indicate a compressed octet sequence. The compression
control is only used in association with one or more Extended Objects and/or Reused Extended
Objects.

TSMSProtocolStatus
type
 TSMSProtocolStatus =
 (smspsEmpty
 , smspsOK
 , smspsNotComplete
);

Status of TSMSProtocol (p.57)
smspsEmpty :

No fragment in TSMSProtocol (p.57)
smspsOK:

All fragments has been inserted and data are available in TSMSProtocol (p.57).Data (p.57)
smspsNotComplete :

Not all fragments have been inserted, TSMSProtocol (p.57).Data (p.57) are incomplete

TSMSProtocolInsertStatus
type
 TSMSProtocolInsertStatus =
 (smsprOK
 , smsprBadFragment
 , smsprFragmentDoesNotFit
 , smsprFragmentDifferentData
);

Result of TSMSProtocol (p.57).InsertFragment (p.58)
smsprOK:

Inserted fragment has been sucesfully inserted
smsprBadFragment :

Inserted fragment has bad format.
smsprFragmentDoesNotFit :

Inserted fragment does not fit. It's probably protocol from other data package
smsprFragmentDifferentData :

Inserted fragment does fit but content differs from formerly inserted fragment

Boomerang Library Guide

 - 82 -

TSMSProtocolOptions
type
 TSMSProtocolOptions =
 (smspoAddressing
 , smspoReference
);

Options used for fragment encoding
smspoAddressing :

Force inserting address to fragments
smspoReference :

Force inserting address to fragments

smCommonTelChar
const
 smCommonTelChar = ['-', '#', '*', 'W', 'w', 'P', 'p', smSpace (p. Chyba! Záložka není definována.)] +

Legal chars for phone number

smBlinkOn
const
 smBlinkOn = TChar('y');

Enable blinking char

smBlinkOff
const
 smBlinkOff = TChar('o');

Disable blinking char

emsodiaNoForwarding
const
 emsodiaNoForwarding = '01';

the associated object(s) shall not be forwarded by SMS

emsxaNoForwarding
const
 emsxaNoForwarding = '01';

object shall not be forwarded by SMS

Boomerang Library Guide

 - 83 -

emsxaUserPrompt
const
 emsxaUserPrompt = '02';

object shall be handled as a User Prompt

